scholarly journals Growth, Photosynthesis, and Physiological Responses of Ornamental Plants to Complementation with Monochromic or Mixed Red-Blue LEDs for Use in Indoor Environments

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 284
Author(s):  
Pedro García-Caparrós ◽  
Gabriela Martínez-Ramírez ◽  
Eva María Almansa ◽  
Francisco Javier Barbero ◽  
Rosa María Chica ◽  
...  

Inch (Tradescantia zebrina) and spider (Chlorophytum comosum) plants were grown in a growth chamber for two months in plastic containers to evaluate the effects of different light treatments (TO Tube luminescent Dunn (TLD) lamps or control), TB (TLD lamps + blue light emitting diodes (LEDs)), TR (TLD lamps + red LEDs), and TBR (TLD lamps + blue and red LEDs) on biomass, photosynthesis, and physiological parameters. Total dry weight and water content were evaluated at the end of the experimental period. After two months, pigment concentrations and the photosynthetic rate were assessed in both species. The total soluble sugar, starch, and proline concentrations in the leaf as physiological parameters were studied at the end of the experiment. Both species had increased root, shoot, and total dry weight under blue LEDs conditions. The chlorophyll concentration showed a specific response in each species under monochromic or mixed red-blue LEDs. The highest photosynthetic rate was measured under the addition of mixed red-blue LEDs with TLD lamps. At the physiological level, each species triggered different responses with respect to total soluble sugars and the proline concentration in leaves under monochromic or mixed red-blue LEDs. Our study demonstrated that the addition of blue LEDs is advisable for the production of these ornamental foliage species.

Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 126 ◽  
Author(s):  
Pedro García-Caparros ◽  
Eva María Almansa ◽  
Francisco Javier Barbero ◽  
Rosa María Chica ◽  
María Teresa Lao

The purpose of the present study was to evaluate the effects of different light treatments on biomass, nutrient concentrations and physiological parameters of Fittonia verschaffeltii (Lem) Van Houtte. The aim was to establish a methodology to evaluate the effect of photosynthetically active radiation (PAR) emitted by lamps on biomass. The light treatments used were tube luminescent Dunn (TL-D), tube luminescent Dunn + light emitting diodes (LEDs) and Tube luminescent 5 (TL-5). At the end of the experimental period, biomass, nutritional, biochemical, and physiological parameters were assessed. A clear reduction in total plant dry weight under TL-D + LEDs at the end of the experiment was recorded. With respect to nutrient concentration in the different organs assessed, there was no clear response under the different light treatments. The growth under TL-D lamps resulted in the highest concentration of total soluble sugars and starch in leaves, whereas the highest value of indole 3-acetic acid concentration was under TL-5 lamps. Plants grown under TL-D + LEDs showed the lowest values of chlorophyll a, b and a + b. The relationship proposed between integrated use of spectral energy (IUSE) and total dry weight (TDW) showed a good correlation with an R2 value of 0.86, therefore we recommend this methodology to discern the effects of the different spectral qualities on plant biomass.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 945
Author(s):  
Pedro García-Caparrós ◽  
Francisco Sabio ◽  
Francisco Javier Barbero ◽  
Rosa María Chica ◽  
María Teresa Lao

Tomato and cucumber seedlings were grown in a growth chamber to evaluate the effects of different cycles of light–dark exposure conditions (T0 (control treatment) (1 cycle of 24 h distributed in 18 h of light exposure and six hours of dark), T1 (two cycles of 12 h distributed in nine hours of light exposure and three hours of dark) and T2 (three cycles of eight hours distributed in six hours of light exposure and two hours of dark) on growth, nutrient status, pigment concentration and physiological changes. Total dry weight showed different behaviors in both species, since in tomato the total dry weight remained unchanged under varying light–dark cycles, whereas in cucumber seedlings there was a clear decrease compared to the control treatment. In both species, plants grown under T2 showed the best water content. Nitrogen, P and K content—as well as partitioning in the different organs of the plants—displayed different patterns under varying cycles of light–dark conditions in both species. Chlorophyll (b and a + b) concentration decreased significantly in both species in T1 and T2 compared to the control treatment (T0). At physiological level, the concentration of total soluble sugars and proline in leaf showed the highest value in the control treatment with 18 h of light and six hours of dark.


1983 ◽  
Vol 63 (2) ◽  
pp. 415-420 ◽  
Author(s):  
D. G. GREEN

Alfa, a relatively nonhardy alfalfa cultivar continued to accumulate, on a dry weight basis, fructose, α- and β-D-glucose, sucrose and maltose during the latter stages of cold hardening. Rambler, a hardier alfalfa cultivar conversely showed a decrease for these soluble sugars with hardening. Frontier rye, a very hardy winter habit cereal showed decreases in these soluble sugars plus melibiose during the same hardening period. These results support the hypothesis that hardy cereals and alfalfa undergo a decrease in soluble sugars with hardening, while less hardy cereals and alfalfa continue to increase in content of soluble sugars. Manitou wheat appeared not to fit this hypothesis and showed the decreased soluble sugars usually associated with hardy cultivars. Although Manitou is a spring type wheat, one of its parents, Thatcher, does contain gene(s) for the winter habit.Key words: Sugar, cold hardening, wheat, rye, alfalfa


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaojing Xu ◽  
Yingli Zhou ◽  
Ping Mi ◽  
Baoshan Wang ◽  
Fang Yuan

AbstractLimonium sinuatum, a member of Plumbaginaceae commonly known as sea lavender, is widely used as dried flower. Five L. sinuatum varieties with different flower colors (White, Blue, Pink, Yellow, and Purple) are found in saline regions and are widely cultivated in gardens. In the current study, we evaluated the salt tolerance of these varieties under 250 mmol/L NaCl (salt-tolerance threshold) treatment to identify the optimal variety suitable for planting in saline lands. After the measurement of the fresh weight (FW), dry weight (DW), contents of Na+, K+, Ca2+, Cl−, malondialdehyde (MDA), proline, soluble sugars, hydrogen peroxide (H2O2), relative water content, chlorophyll contents, net photosynthetic rate, and osmotic potential of whole plants, the salt-tolerance ability from strongest to weakest is identified as Pink, Yellow, Purple, White, and Blue. Photosynthetic rate was the most reliable and positive indicator of salt tolerance. The density of salt glands showed the greatest increase in Pink under NaCl treatment, indicating that Pink adapts to high-salt levels by enhancing salt gland formation. These results provide a theoretical basis for the large-scale planting of L. sinuatum in saline soils in the future.


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 265 ◽  
Author(s):  
Ping Yang ◽  
Muhammad Azher Nawaz ◽  
Fuxin Li ◽  
Lisha Bai ◽  
Jie Li

Autotoxicity is a common problem being faced in protected vegetable cultivation system. Phytoremediation of plant autotoxicity is an emerging concept to minimize deterioration of soil environment and reduction of yield and quality of vegetable crops. Brassinosteroids (BRs) have been reported as a potential phytohormone to assist phytoremediation. However, the effects of BRs-induced autotoxicity stress on plant growth, photosynthesis and antioxidant defense system are poorly understood. Hence, we focused on the changes in physiological characteristics and ultrastructure of cucumber leaves in response to the application of 24-epibrassinolide (EBR) under autotoxicity stress conditions. The results showed that leaf area, plant height, fresh weight and dry weight of cucumber were obviously decreased under autotoxicity stress conditions. EBR application obviously improved the phenotypic characteristics of cucumber seedlings. Chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate of cucumber leaves were markedly reduced under autotoxicity stress conditions. Application of EBR improved the photosynthetic pigments (chlorophyll a by 15.80%, chlorophyll b by 18.70% and total chlorophyll content by 17.30%), net photosynthetic rate by 36.40% and stomatal opening of leaves under autotoxicity stress conditions. EBR application also maintained the integrity of chloroplast and thylakoid structures under autotoxicity stress conditions. The activity of catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) and antioxidative compounds ascorbate (AsA) and reduced glutathione (GSH) contents were markedly decreased, however, these were obviously increased after EBR application under autotoxicity stress. EBR application also increased the soluble sugar and protein, and proline concentration by 59.70%, 7.22% and 36.58%, respectively in the leaves of cucumber, decreased malondialdehyde by 24.13% and reactive oxygen species contents (H2O2 by 35.17%, O2− by 12.01% and •OH by 16.59%), and reduced the relative permeability of the cell membrane by 14.31%. These findings suggest that EBR application enhanced the photosynthetic capacity of leaves, maintained the integrity of chloroplast and thylakoid structures, and effectively alleviated the damage of membrane caused by lipid peroxidation and root damage under autotoxicity stress conditions. The growth inhibition effect of autotoxicity stress on cucumber was reduced by EBR application.


2000 ◽  
Vol 10 (3) ◽  
pp. 393-396 ◽  
Author(s):  
Nathalie Chabrillange ◽  
Stéphane Dussert ◽  
Florent Engelmann ◽  
Sylvie Doulbeau ◽  
Serge Hamon

AbstractLarge differences in seed desiccation sensitivity have been observed previously among ten coffee species (Coffea arabica, C. brevipes, C. canephora, C. eugenioides, C. humilis, C. liberica, C. pocsii, C. pseudo-zanguebariae, C. sessiliflora and C.stenophylla). Of these species,C. libericaandC. humiliswere the most sensitive to desiccation andC. pseudozanguebariaethe most tolerant. A study was carried out using the same seed lots to investigate if these differences in desiccation tolerance could be correlated with differences in soluble sugar content. Soluble sugars were extracted from dry seeds and analysed using high performance liquid chromatography. The seed monosaccharide (glucose and fructose) content was very low (1.5 to 2 mg g-1dry weight [dw]) in all species studied. The sucrose content ranged from 33 mg g-1dw inC. libericaseeds to 89 mg g-1dw in seeds ofC. pocsii. Raffinose was detected in the seeds of only five species (C.arabica, C.brevipes, C.humilis, C.sessiliflora, C.stenophylla), among which only three species (C.arabica, C.sessilifloraandC.brevipes) also contained stachyose. Both raffinose and stachyose were present in very low quantities (0.3–1.4 mg g-1dw and 0.1–0.7 mg g-1dw, respectively). Verbascose was never detected. No significant relationship was found between seed desiccation sensitivity and: (i) the sugar content; (ii) the presence/absence of oligosaccharides; and (iii) the oligosaccharide:sucrose ratio.


1996 ◽  
Vol 121 (6) ◽  
pp. 1103-1111 ◽  
Author(s):  
Cheryl R. Hampson ◽  
Anita N. Azarenko ◽  
John R. Potter

In hazelnut (Corylus avellana L.), vigorous vegetative growth and traditional orchard practices that include little or no pruning combine to produce a dense, shady canopy. A study designed to quantify the effect of shade on reproduction and photosynthetic rate in this shade-tolerant species was undertaken to assess whether some degree of pruning might improve productivity. Shade cloth was used to exclude 30%, 47%, 63%, 73%, or 92% of ambient sunlight from whole `Ennis' and `Barcelona' trees from mid-May until harvest. Photosynthetic light response curves were obtained for leaves that had developed in full sunlight, deep inside the canopy of unshaded trees, or in 92% shade. Light-saturated net photosynthetic rates were 12.0, 6.1, and 9.3 μmol·m-2·s-1 of CO2 and dark respiration rates were 2.0, 1.1, and 0.7 μmol·m-2·s-1 of CO2, respectively, for the three light regimes. Light-saturated photosynthetic rates of leaves from 30% or 63% shade differed little from the control (0% shade). Area per leaf increased by 49% and chlorophyll concentration (dry weight basis) by 157% as shading increased from 0% to 92%. Shading to 92% reduced specific leaf weight (68%), stomatal density (30%), light compensation point (69%), and dark respiration rate (63%) compared to controls. Female inflorescence density declined by about one-third and male inflorescence density by 64% to 74% in the most heavily shaded trees of both cultivars compared to controls. Shade was more detrimental to yield than flowering: yield per tree dropped by >80%, from 2.9 to 3.4 kg in full sun to 0.6 to 0.9 kg in 92% shade. Shade reduced yield primarily by decreasing nut number and secondarily by decreasing nut size. The incidence of several kernel defects increased as shade increased. Therefore, hazelnut leaves showed considerable capacity to adapt structurally and functionally to shade, but improving light penetration into the canopy would probably increase orchard productivity.


2021 ◽  
Author(s):  
Fatemeh Ebrahimi ◽  
Amin Salehi ◽  
Mohsen Movahedi Dehnavi ◽  
Amin Mirshekari ◽  
Mohammad Hamidian ◽  
...  

Abstract BackgroundWater-deficit stress is one of the most important sources of damage to crop production worldwide. Adopting appropriate varieties using soil microorganisms such as arbuscular mycorrhiza(AM) can significantly reduce theadverseeffectsofwater deficiency.This study is aimed to evaluate the role of Funneliformismosseaeon nutrients uptake and some physiological traits of two chamomile varieties namely Bodgold (Bod) and Soroksári(Sor) under water-deficit stress. The pot experiment was performed in a hydroponic system within a completely randomized design considering four replications. Three levels of water-deficit stress (PEG 6000) were taken into account at water potentials of -0.4 and -0.8MPa. The second factor was AM inoculation.ResultsWater-deficit stress significantly reduced the uptake of macro-nutrients (N, P, and K) and micro-nutrients (Fe, Cu, Mn, and Zn) in the shoots and roots. Moreover, the level of osmolytes (total soluble sugars and proline) and the activity of antioxidant enzymes in the shoots of both varieties increased under water-deficit stress. In the case of Sor variety, the level of these compounds was more satisfactory. AM improved plant nutrition uptake and osmolyte contents while enhancing antioxidant enzymes and reducing theadverseeffectsofwater-deficit stress. Under water-deficit stress, the growth and total dry weight improved upon AM inoculation. ConclusionsIn general, inoculation of chamomile with AM balanced the uptake of nutrients increased the level of osmolytes, antioxidant enzymes, and hence improved plant characteristics under water-deficit stress in both varieties, however, it was more effective in reducing stress damages in Sor variety.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
G. H. Yu ◽  
X. Zhang ◽  
H. X. Ma

The SbPIP1 gene is a new member of the plasma membrane major intrinsic gene family cloned from the euhalophyteSalicornia bigeloviiTorr. In order to understand the physiological responses in plants that are mediated by the SbPIP1 gene, SbPIP1-overexpressing wheat lines and WT plants of the wheat cv. Ningmai 13 were treated with salt stress. Several physiological parameters, such as the proline content, the malondialdehyde (MDA) content, and the content of soluble sugars and proteins, were compared between SbPIP1-transformed lines and WT plants under normal growth or salt stress conditions. The results indicate that overexpression of the SbPIP1 gene can increase the accumulation of the osmolyte proline, decrease the MDA content, and enhance the soluble sugar biosynthesis in the early period but has no influence on the regulation of soluble protein biosynthesis in wheat. The results suggest that SbPIP1 contributes to salt tolerance by facilitating the accumulation of the osmolyte proline, increasing the antioxidant response, and increasing the biosynthesis of soluble sugar in the early period. These results indicate SbPIP1 plays an important role in the salt stress response. Overexpression of SbPIP1 might be used to improve the salt tolerance of important crop plants.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 648d-648
Author(s):  
Jack W. Buxton ◽  
Donna Switzer ◽  
Guoqiang Hou

Marigold seedlings, 3 weeks old, were grown in natural light growth chambers at 3 day/night temperature regimes, 8°N/16°D, 13°N/20°D and 18°N/24°D, in a factorial combination with ambient and 1000-1500 ppm CO2. Seedlings were harvested at regular intervals during a 24 hr period and were analyzed for soluble sugars (reducing sugars and sucrose) and starch. Neither temperature nor CO2 concentration affected the accumulation of soluble sugars or starch during the day or night. The soluble sugar concentration ranged from 3% of dry weight at sunrise to 6% at mid-day; the concentration changed little during the night. Light intensity was different during replications of the experiment. Increased light intensity appeared to cause a slight increase in the soluble sugars maintained by the seedling during the day. Accumulated starch increased 6% to 8% from sunrise to late afternoon. Preliminary results indicate that light intensity greatly affected the concentration of starch. On the higher light intensity day, starch accumulated to a maximum of 18% of dry weight; whereas on the lower light intensity day the maximum concentration was 10%. During the night following the lower light intensity day, the starch concentration decreased to approximately 3% by the end of the night; following a brighter day the starch content was 13% at the end of the night.


Sign in / Sign up

Export Citation Format

Share Document