scholarly journals Transcriptomic Analysis of Female Panicles Reveals Gene Expression Responses to Drought Stress in Maize (Zea mays L.)

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 313 ◽  
Author(s):  
Shuangjie Jia ◽  
Hongwei Li ◽  
Yanping Jiang ◽  
Yulou Tang ◽  
Guoqiang Zhao ◽  
...  

Female panicles (FPs) play an important role in the formation of yields in maize. From 40 days after sowing to the tasseling stage for summer maize, FPs are developing and sensitive to drought. However, it remains unclear how FPs respond to drought stress during FP development. In this study, FP differentiation was observed at 20 and 30 days after drought (DAD) and agronomic trait changes of maize ears were determined across three treatments, including well-watered (CK), light drought (LD), and moderate drought (MD) treatments at 20, 25, and 30 DAD. RNA-sequencing was then used to identify differentially expressed genes (DEGs) in FPs at 30 DAD. Spikelets and florets were suppressed in LD and MD treatments, suggesting that drought slows FP development and thus decreases yields. Transcriptome analysis indicated that 40, 876, and 887 DEGs were detected in LD/CK, MD/CK, and MD/LD comparisons. KEGG pathway analysis showed that ‘biosynthesis of other secondary metabolites’ and ‘carbohydrate metabolism’ were involved in the LD response, whereas ‘starch and sucrose metabolism’ and ‘plant hormone signal transduction’ played important roles in the MD response. In addition, a series of molecular cues related to development and growth were screened for their drought stress responses.

2020 ◽  
Vol 21 (22) ◽  
pp. 8520
Author(s):  
Ling Qin ◽  
Erying Chen ◽  
Feifei Li ◽  
Xiao Yu ◽  
Zhenyu Liu ◽  
...  

Foxtail millet (Setaria italica (L.) P. Beauv) is an important food and forage crop because of its health benefits and adaptation to drought stress; however, reports of transcriptomic analysis of genes responding to re-watering after drought stress in foxtail millet are rare. The present study evaluated physiological parameters, such as proline content, p5cs enzyme activity, anti-oxidation enzyme activities, and investigated gene expression patterns using RNA sequencing of the drought-tolerant foxtail millet variety (Jigu 16) treated with drought stress and rehydration. The results indicated that drought stress-responsive genes were related to many multiple metabolic processes, such as photosynthesis, signal transduction, phenylpropanoid biosynthesis, starch and sucrose metabolism, and osmotic adjustment. Furthermore, the Δ1-pyrroline-5-carboxylate synthetase genes, SiP5CS1 and SiP5CS2, were remarkably upregulated in foxtail millet under drought stress conditions. Foxtail millet can also recover well on rehydration after drought stress through gene regulation. Our data demonstrate that recovery on rehydration primarily involves proline metabolism, sugar metabolism, hormone signal transduction, water transport, and detoxification, plus reversal of the expression direction of most drought-responsive genes. Our results provided a detailed description of the comparative transcriptome response of foxtail millet variety Jigu 16 under drought and rehydration environments. Furthermore, we identify SiP5CS2 as an important gene likely involved in the drought tolerance of foxtail millet.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Huijing Zhu ◽  
Xin Zhu ◽  
Yuhong Liu ◽  
Fusong Jiang ◽  
Miao Chen ◽  
...  

Objective. The aim of this study was to identify the candidate genes in type 2 diabetes mellitus (T2DM) and explore their potential mechanisms. Methods. The gene expression profile GSE26168 was downloaded from the Gene Expression Omnibus (GEO) database. The online tool GEO2R was used to obtain differentially expressed genes (DEGs). Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed by using Metascape for annotation, visualization, and comprehensive discovery. The protein-protein interaction (PPI) network of DEGs was constructed by using Cytoscape software to find the candidate genes and key pathways. Results. A total of 981 DEGs were found in T2DM, including 301 upregulated genes and 680 downregulated genes. GO analyses from Metascape revealed that DEGs were significantly enriched in cell differentiation, cell adhesion, intracellular signal transduction, and regulation of protein kinase activity. KEGG pathway analysis revealed that DEGs were mainly enriched in the cAMP signaling pathway, Rap1 signaling pathway, regulation of lipolysis in adipocytes, PI3K-Akt signaling pathway, MAPK signaling pathway, and so on. On the basis of the PPI network of the DEGs, the following 6 candidate genes were identified: PIK3R1, RAC1, GNG3, GNAI1, CDC42, and ITGB1. Conclusion. Our data provide a comprehensive bioinformatics analysis of genes, functions, and pathways, which may be related to the pathogenesis of T2DM.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xia Chen ◽  
Ling Liao ◽  
Yuwei Li ◽  
Hengliu Huang ◽  
Qing Huang ◽  
...  

Background. The molecular mechanism by which hepatitis B virus (HBV) induces hepatocellular carcinoma (HCC) is still unknown. The genomic expression profile and bioinformatics methods were used to investigate the potential pathogenesis and therapeutic targets for HBV-associated HCC (HBV-HCC). Methods. The microarray dataset GSE55092 was downloaded from the Gene Expression Omnibus (GEO) database. The data was analyzed by the bioinformatics software to find differentially expressed genes (DEGs). Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, ingenuity pathway analysis (IPA), and protein-protein interaction (PPI) network analysis were then performed on DEGs. The hub genes were identified using Centiscape2.2 and Molecular Complex Detection (MCODE) in the Cytoscape software (Cytoscape_v3.7.2). The survival data of these hub genes was downloaded from the Gene Expression Profiling Interactive Analysis (GEPIA). Results. A total of 2264 mRNA transcripts were differentially expressed, including 764 upregulated and 1500 downregulated in tumor tissues. GO analysis revealed that these DEGs were related to the small-molecule metabolic process, xenobiotic metabolic process, and cellular nitrogen compound metabolic process. KEGG pathway analysis revealed that metabolic pathways, complement and coagulation cascades, and chemical carcinogenesis were involved. Diseases and biofunctions showed that DEGs were mainly associated with the following diseases or biological function abnormalities: cancer, organismal injury and abnormalities, gastrointestinal disease, and hepatic system disease. The top 10 upstream regulators were predicted to be activated or inhibited by Z-score and identified 25 networks. The 10 genes with the highest degree of connectivity were defined as the hub genes. Cox regression revealed that all the 10 genes (CDC20, BUB1B, KIF11, TTK, EZH2, ZWINT, NDC80, TPX2, MELK, and KIF20A) were related to the overall survival. Conclusion. Our study provided a registry of genes that play important roles in regulating the development of HBV-HCC, assisting us in understanding the molecular mechanisms that underlie the carcinogenesis and progression of HCC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Pibiao Shi ◽  
Minfeng Gu

Abstract Background Soil salinity is one of the major abiotic stress factors that affect crop growth and yield, which seriously restricts the sustainable development of agriculture. Quinoa is considered as one of the most promising crops in the future for its high nutrition value and strong adaptability to extreme weather and soil conditions. However, the molecular mechanisms underlying the adaptive response to salinity stress of quinoa remain poorly understood. To identify candidate genes related to salt tolerance, we performed reference-guided assembly and compared the gene expression in roots treated with 300 mM NaCl for 0, 0.5, 2, and 24 h of two contrasting quinoa genotypes differing in salt tolerance. Results The salt-tolerant (ST) genotype displayed higher seed germination rate and plant survival rate, and stronger seedling growth potential as well than the salt-sensitive (SS) genotype under salt stress. An average of 38,510,203 high-quality clean reads were generated. Significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified to deeper understand the differential response. Transcriptome analysis indicated that salt-responsive genes in quinoa were mainly related to biosynthesis of secondary metabolites, alpha-Linolenic acid metabolism, plant hormone signal transduction, and metabolic pathways. Moreover, several pathways were significantly enriched amongst the differentially expressed genes (DEGs) in ST genotypes, such as phenylpropanoid biosynthesis, plant-pathogen interaction, isoquinoline alkaloid biosynthesis, and tyrosine metabolism. One hundred seventeen DEGs were common to various stages of both genotypes, identified as core salt-responsive genes, including some transcription factor members, like MYB, WRKY and NAC, and some plant hormone signal transduction related genes, like PYL, PP2C and TIFY10A, which play an important role in the adaptation to salt conditions of this species. The expression patterns of 21 DEGs were detected by quantitative real-time PCR (qRT-PCR) and confirmed the reliability of the RNA-Seq results. Conclusions We identified candidate genes involved in salt tolerance in quinoa, as well as some DEGs exclusively expressed in ST genotype. The DEGs common to both genotypes under salt stress may be the key genes for quinoa to adapt to salinity environment. These candidate genes regulate salt tolerance primarily by participating in reactive oxygen species (ROS) scavenging system, protein kinases biosynthesis, plant hormone signal transduction and other important biological processes. These findings provide theoretical basis for further understanding the regulation mechanism underlying salt tolerance network of quinoa, as well establish foundation for improving its tolerance to salinity in future breeding programs.


2018 ◽  
Author(s):  
Weiping Shi ◽  
Jingye Cheng ◽  
Xiaojie Wen ◽  
Jixiang Wang ◽  
Guanyan Shi ◽  
...  

Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet (Setaria italica L.) production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ~20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs) in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO) enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in M79, including photosystem II (PSII) oxygen-evolving complex, peroxidase (POD) activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4752 ◽  
Author(s):  
Weiping Shi ◽  
Jingye Cheng ◽  
Xiaojie Wen ◽  
Jixiang Wang ◽  
Guanyan Shi ◽  
...  

Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet (Setaria italica L.) production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ∼20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs) in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO) enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in M79, including photosystem II (PSII) oxygen-evolving complex, peroxidase (POD) activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.


2021 ◽  
Author(s):  
MEGHA BHATT

Abstract Drought is one of the key abiotic stresses that critically influences the crops by restraining their growth and yield potential. Being sessile, plant tackle the detrimental effects of drought stress via modulating the cellular state by changing the gene expression. Such alteration of gene expression is essentially driven by the transcriptional syndicate. Transcription factors (TF) are the key regulatory protein that controls the expression of their target gene by binding to the cis-regulatory elements present in the promoter region. Myb-TF subiquitously present in all eukaryotes belong to one of the largest TF family, and play wide array of biological functions in plants including anthocyanin biosynthesis, vasculature system, cell signaling, seed maturation and abiotc stress responses. In the present study, isolation, and molecular cloning of full length Myb TF from Eleusine corocana has been performed. The isolated full-length coding sequence has 1053 bp and 350 aa was submitted to NCBI (Accession number MT312253). The transcript level of EcMYB increases under different abiotic stress treatment including dehydration, salinity, and high temperature stress. The promoter region of EcMyb1 was found to be enriched in stress-responsive cis-regulatory elements such as DRE, HSE, ABRE etc. In phylogenetic analysis, EcMyb1 appeared to have high homology with its monocot orthologs particularly Sateria italica, Hordeum vulgare, Saccharum barberi and Oryza sativa. The three-dimension protein structure was generated based on homology modeling and structural aspects were discussed. Further, Insilco analysis was conducted to explore the physiological properties, subcellular localization, potential post-translational modification sites (phosphorylation and glycosylation sites), and molecular and biological function of full-length protein. Overall, the expression profiling and Insilco analysis of EcMyb1 strongly indicated its potential role in abiotic stress response in Eleusine corocana.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Xianglu Li ◽  
William G. Fusco ◽  
Keun S. Seo ◽  
Kenneth W. Bayles ◽  
Erin E. Mosley ◽  
...  

HEp-2 cell monolayers were cocultured with intracellularStaphylococcus aureus, and changes in gene expression were profiled using DNA microarrays. IntracellularS. aureusaffected genes involved in cellular stress responses, signal transduction, inflammation, apoptosis, fibrosis, and cholesterol biosynthesis. Transcription of stress response and signal transduction-related genes includingatf3, sgk, map2k1, map2k3, arhb, andarhewas increased. In addition, elevated transcription of proinflammatory genes was observed fortnfa, il1b, il6, il8, cxcl1, ccl20, cox2,andpai1. Genes involved in proapoptosis and fibrosis were also affected at transcriptional level by intracellularS. aureus. Notably, intracellularS. aureusinduced strong transcriptional down-regulation of several cholesterol biosynthesis genes. These results suggest that epithelial cells respond to intracellularS. aureusby inducing genes affecting immunity and in repairing damage caused by the organism, and are consistent with the possibility that the organism exploits an intracellular environment to subvert host immunity and promote colonization.


2019 ◽  
Author(s):  
Yanyan Tang ◽  
Ping Zhang

Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most common malignant tumor in digestive system. CircRNAs involve in lots of biological processes through interacting with miRNAs and their targeted mRNA. We obtained the circRNA gene expression profiles from Gene Expression Omnibus (GEO) and identified differentially expressed genes (DEGs) between PDAC samples and paracancerous tissues. Bioinformatics analyses, including GO analysis, KEGG pathway analysis and PPI network analysis, were conducted for further investigation. We also constructed circRNA‑microRNA-mRNA co-expression network. A total 291 differentially expressed circRNAs were screened out. The GO enrichment analysis revealed that up-regulated DEGs were mainly involved metabolic process, biological regulation, and gene expression, and down-regulated DEGs were involved in cell communication, single-organism process, and signal transduction. The KEGG pathway analysis, the upregulated circRNAs were enriched cGMP-PKG signaling pathway, and HTLV-I infection, while the downregulated circRNAs were enriched in protein processing in endoplasmic reticulum, insulin signaling pathway, regulation of actin cytoskeleton, etc. Four genes were identified from PPI network as both hub genes and module genes, and their circRNA‑miRNA-mRNA regulatory network also be constructed. Our study indicated possible involvement of dysregulated circRNAs in the development of PDAC and promoted our understanding of the underlying molecular mechanisms.


Sign in / Sign up

Export Citation Format

Share Document