scholarly journals The Importance of Ion Homeostasis and Nutrient Status in Seed Development and Germination

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 504 ◽  
Author(s):  
María del Carmen Martínez-Ballesta ◽  
Catalina Egea-Gilabert ◽  
Encarnación Conesa ◽  
Jesús Ochoa ◽  
María José Vicente ◽  
...  

Seed is the dissemination unit of plants initiating an important stage in the life cycle of plants. Seed development, comprising two phases: embryogenesis and seed maturation, may define the quality of sown seed, especially under abiotic stress. In this review we have focused on the recent advances in the molecular mechanisms underlying these complex processes and how they are controlled by distinct environmental factors regulating ion homeostasis into the seed tissues. The role of transporters affecting seed embryogenesis and first stages of germination as imbibition and subsequent radicle protrusion and extension were revised from a molecular point of view. Seed formation depends on the loading of nutrients from the maternal seed coat to the filial endosperm, a process of which the efflux is not clear and where different ions and transporters are involved. The clear interrelation between soil nutrients, presence of heavy metals and the ion capacity of penetration through the seed are discussed in terms of ion effect during different germination stages. Results concerning seed priming techniques used in the improvement of seed vigor and radicle emergence are shown, where the use of nutrients as a novel way of osmopriming to alleviate abiotic stress effects and improve seedlings yield is discussed. Novel approaches to know the re-translocation from source leaves to developing seeds are considered, as an essential mechanism to understand the biofortification process of certain grains in order to cope with nutrient deficiencies, especially in arid and semiarid areas. Finally, the role of new genes involved in hormone-dependent processes, oxidative response and water uptake into the seeds during their development or germination, have been described as plant mechanisms to deal with abiotic stresses.

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 300
Author(s):  
Camilla Ceccatelli Berti ◽  
Giulia di Punzio ◽  
Cristina Dallabona ◽  
Enrico Baruffini ◽  
Paola Goffrini ◽  
...  

The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.


Agronomy ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 31 ◽  
Author(s):  
Mirza Hasanuzzaman ◽  
M. Bhuyan ◽  
Kamrun Nahar ◽  
Md. Hossain ◽  
Jubayer Mahmud ◽  
...  

Among the plant nutrients, potassium (K) is one of the vital elements required for plant growth and physiology. Potassium is not only a constituent of the plant structure but it also has a regulatory function in several biochemical processes related to protein synthesis, carbohydrate metabolism, and enzyme activation. Several physiological processes depend on K, such as stomatal regulation and photosynthesis. In recent decades, K was found to provide abiotic stress tolerance. Under salt stress, K helps to maintain ion homeostasis and to regulate the osmotic balance. Under drought stress conditions, K regulates stomatal opening and helps plants adapt to water deficits. Many reports support the notion that K enhances antioxidant defense in plants and therefore protects them from oxidative stress under various environmental adversities. In addition, this element provides some cellular signaling alone or in association with other signaling molecules and phytohormones. Although considerable progress has been made in understanding K-induced abiotic stress tolerance in plants, the exact molecular mechanisms of these protections are still under investigation. In this review, we summarized the recent literature on the biological functions of K, its uptake, its translocation, and its role in plant abiotic stress tolerance.


2002 ◽  
Vol 12 (12) ◽  
pp. 1854-1859
Author(s):  
Esther Betrán ◽  
Kevin Thornton ◽  
Manyuan Long

New genes that originated by various molecular mechanisms are an essential component in understanding the evolution of genetic systems. We investigated the pattern of origin of the genes created by retroposition in Drosophila. We surveyed the wholeDrosophila melanogaster genome for such new retrogenes and experimentally analyzed their functionality and evolutionary process. These retrogenes, functional as revealed by the analysis of expression, substitution, and population genetics, show a surprisingly asymmetric pattern in their origin. There is a significant excess of retrogenes that originate from the X chromosome and retropose to autosomes; new genes retroposed from autosomes are scarce. Further, we found that most of these X-derived autosomal retrogenes had evolved a testis expression pattern. These observations may be explained by natural selection favoring those new retrogenes that moved to autosomes and avoided the spermatogenesis X inactivation, and suggest the important role of genome position for the origin of new genes.[The sequence data from this study have been submitted to GenBank under accession nos. AY150701–AY150797. The following individuals kindly provided reagents, samples, or unpublished information as indicated in the paper: M.-L. Wu, F. Lemeunier, and P. Gibert.]


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 705 ◽  
Author(s):  
Angel J. Matilla

The production of viable seeds is a key event in the life cycle of higher plants. Historically, abscisic acid (ABA) and gibberellin (GAs) were considered the main hormones that regulate seed formation. However, auxin has recently emerged as an essential player that modulates, in conjunction with ABA, different cellular processes involved in seed development as well as the induction, regulation and maintenance of primary dormancy (PD). This review examines and discusses the key role of auxin as a signaling molecule that coordinates seed life. The cellular machinery involved in the synthesis and transport of auxin, as well as their cellular and tissue compartmentalization, is crucial for the development of the endosperm and seed-coat. Thus, auxin is an essential compound involved in integuments development, and its transport from endosperm is regulated by AGAMOUS-LIKE62 (AGL62) whose transcript is specifically expressed in the endosperm. In addition, recent biochemical and genetic evidence supports the involvement of auxins in PD. In this process, the participation of the transcriptional regulator ABA INSENSITIVE3 (ABI3) is critical, revealing a cross-talk between auxin and ABA signaling. Future experimental aimed at advancing knowledge of the role of auxins in seed development and PD are also discussed.


2020 ◽  
Vol 21 (21) ◽  
pp. 8161
Author(s):  
Giada Callizaya Terceros ◽  
Francesca Resentini ◽  
Mara Cucinotta ◽  
Silvia Manrique ◽  
Lucia Colombo ◽  
...  

Fertilization and seed formation are fundamental events in the life cycle of flowering plants. The seed is a functional unit whose main purpose is to propagate the plant. The first step in seed development is the formation of male and female gametophytes and subsequent steps culminate in successful fertilization. The detailed study of this process is highly relevant because it directly impacts human needs, such as protecting biodiversity and ensuring sustainable agriculture to feed the increasing world population. Cytokinins comprise a class of phytohormones that play many important roles during plant growth and development and in recent years, the role of this class of phytohormones during reproduction has become clear. Here, we review the role of cytokinins during ovule, pollen and seed formation at the genetic and molecular levels. The expansion of knowledge concerning the molecular mechanisms that control plant reproduction is extremely important to optimise seed production.


2019 ◽  
Vol 47 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Stephanie L. Begg

AbstractMetal ions fulfil a plethora of essential roles within bacterial pathogens. In addition to acting as necessary cofactors for cellular proteins, making them indispensable for both protein structure and function, they also fulfil roles in signalling and regulation of virulence. Consequently, the maintenance of cellular metal ion homeostasis is crucial for bacterial viability and pathogenicity. It is therefore unsurprising that components of the immune response target and exploit both the essentiality of metal ions and their potential toxicity toward invading bacteria. This review provides a brief overview of the transition metal ions iron, manganese, copper and zinc during infection. These essential metal ions are discussed in the context of host modulation of bioavailability, bacterial acquisition and efflux, metal-regulated virulence factor expression and the molecular mechanisms that contribute to loss of viability and/or virulence during host-imposed metal stress.


2021 ◽  
Vol 55 (S3) ◽  
pp. 65-86

The family of two-pore domain potassium (K2P) channels is critically involved in central cellular functions such as ion homeostasis, cell development, and excitability. K2P channels are widely expressed in different human cell types and organs. It is therefore not surprising that aberrant expression and function of K2P channels are related to a spectrum of human diseases, including cancer, autoimmune, CNS, cardiovascular, and urinary tract disorders. Despite homologies in structure, expression, and stimulus, the functional diversity of K2P channels leads to heterogeneous influences on human diseases. The role of individual K2P channels in different disorders depends on expression patterns and modulation in cellular functions. However, an imbalance of potassium homeostasis and action potentials contributes to most disease pathologies. In this review, we provide an overview of current knowledge on the role of K2P channels in human diseases. We look at altered channel expression and function, the potential underlying molecular mechanisms, and prospective research directions in the field of K2P channels.


Acta Naturae ◽  
2014 ◽  
Vol 6 (2) ◽  
pp. 71-83 ◽  
Author(s):  
E. A. Trifonova ◽  
T. V. Gabidulina ◽  
N. I. Ershov ◽  
V. N. Serebrova ◽  
A. Yu. Vorozhishcheva ◽  
...  

Preeclampsia is one of the most severe gestational complications which is one of the leading causes of maternal and perinatal morbidity and mortality. A growth in the incidence of severe and combined forms of the pathology has been observed in recent years. According to modern concepts, inadequate cytotrophoblast invasion into the spiral arteries of the uterus and development of the ischemia-reperfusion syndrome in the placental tissue play the leading role in the development of preeclampsia, which is characterized by multipleorgan failure. In this regard, our work was aimed at studying the patterns of placental tissue transcriptome that are specific to females with PE and with physiological pregnancy, as well as identifying the potential promising biomarkers and molecular mechanisms of this pathology. We have identified 63 genes whose expression proved to differ significantly in the placental tissue of females with PE and with physiological pregnancy. A cluster of differentially expressed genes (DEG) whose expression level is increased in patients with preeclampsia includes not only the known candidate genes that have been identified in many other genome-wide studies (e.g., LEP, BHLHB2, SIGLEC6, RDH13, BCL6), but also new genes (ANKRD37, SYDE1, CYBA, ITGB2, etc.), which can be considered as new biological markers of preeclampsia and are of further interest. The results of a functional annotation of DEG show that the development of preeclampsia may be related to a stress response, immune processes, the regulation of cell-cell interactions, intracellular signaling cascades, etc. In addition, the features of the differential gene expression depending on preeclampsia severity were revealed. We have found evidence of the important role of the molecular mechanisms responsible for the failure of immunological tolerance and initiation of the pro-inflammatory cascade in the development of severe preeclampsia. The results obtained elaborate the concept of the pathophysiology of preeclampsia and contain the information necessary to work out measures for targeted therapy of this disease.


Author(s):  
Mirza Hasanuzzaman ◽  
M.H.M. Borhannuddin Bhuyan ◽  
Kamrun Nahar ◽  
Md. Shahadat Hossain ◽  
Jubayer Al Mahmud ◽  
...  

Among the plant nutrients potassium (K) is one of the vital elements required for plant growth and physiology. Potassium is not only a constituent of plant structure but also plays regulatory function in several biochemical processes related to protein synthesis, carbohydrate metabolism, enzyme activation. There are several physiological processes like stomatal regulation and photosynthesis are dependent on K. In the recent decades K was found to provide abiotic stress tolerance. Under salt stress, K helps in maintaining ion homeostasis and regulation of osmotic balance. Under drought stress condition K regulates the stomatal opening and makes the plants adaptive to water deficit. Many reports provided the notion that K enhances the antioxidant defense in plants and therefore, protects the plants from oxidative stress under various environmental adversities. Also, it provides some cellular signaling alone or in association with other signaling molecules and phytohormones. Although a considerable progress in understanding K-induced abiotic stress tolerance in plants has been achieved the exact molecular mechanisms of such protections are still under research. In this review, we summarized the recent literature on the biological functions of K, its uptake, and translocation and its role in plant abiotic stress tolerance.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lingjun Zhang ◽  
Zhengde Du ◽  
Shusheng Gong

Mitochondrial dysfunction has been suggested to be a risk factor for sensorineural hearing loss (SNHL) induced by aging, noise, ototoxic drugs, and gene. Reactive oxygen species (ROS) are mainly derived from mitochondria, and oxidative stress induced by ROS contributes to cochlear damage as well as mitochondrial DNA mutations, which may enhance the sensitivity and severity of hearing loss and disrupt ion homeostasis (e.g., Ca2+ homeostasis). The formation and accumulation of ROS further undermine mitochondrial components and ultimately lead to apoptosis and necrosis. SIRT3–5, located in mitochondria, belong to the family of sirtuins, which are highly conserved deacetylases dependent on nicotinamide adenine dinucleotide (NAD+). These deacetylases regulate diverse cellular biochemical activities. Recent studies have revealed that mitochondrial sirtuins, especially SIRT3, modulate ROS levels in hearing loss pathologies. Although the precise functions of SIRT4 and SIRT5 in the cochlea remain unclear, the molecular mechanisms in other tissues indicate a potential protective effect against hearing loss. In this review, we summarize the current knowledge regarding the role of mitochondrial dysfunction in hearing loss, discuss possible functional links between mitochondrial sirtuins and SNHL, and propose a perspective that SIRT3–5 have a positive effect on SNHL.


Sign in / Sign up

Export Citation Format

Share Document