scholarly journals Growing Medium Type Affects Organic Fertilizer Mineralization and CNPS Microbial Enzyme Activities

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1955
Author(s):  
Louise Paillat ◽  
Patrice Cannavo ◽  
Fabrice Barraud ◽  
Lydie Huché-Thélier ◽  
René Guénon

Managing plant fertilization is a major concern of greenhouse growers to achieve sustainable production with growing media (GM). Organic fertilization is popular but is more difficult to control, since organic compounds need first to be mineralized by microbes. After 7, 14, 28, and 56 days of incubation, we investigated the response of microbial activities and nutrient releases from three frequently used organic fertilizers (horn and two plant-based fertilizers) in three frequently employed GM types (peat, coir, and bark). We measured pH, electrical conductivity, nutrient contents (NH4+-N, NO3−-N, PO43−-P, SO42−-S), and enzyme activities (β-1.4-glucosidase, urease, acid phosphatase, arylsulfatase). After fertilization, microbes in coir expressed all the C, N, P, and S functions studied, making related nutrients available. In peat and bark, some C, N, P, and S-related pathways were locked. Peat presented high NH4+-N and PO43−-P releases linked to high acid phosphatase and β-glucosidase activities, while bark showed high nitrification rates but weak enzyme activities. Fertilizer types modulated these responses with lower activities and nutrient releases with horn. Our results contributed to better understanding mineralization processes in GM, showing different microbial responses to fertilization. This study pointed out the necessity to look deeper into microbial functions in GM optimizing biological and physicochemical properties.

2012 ◽  
Vol 610-613 ◽  
pp. 3027-3033
Author(s):  
Da Lan Feng ◽  
Yan Jin ◽  
Yu Hong Yang ◽  
Jian Guo Huang

An incubation experiment was carried out to study various available N pools and enzyme activities in the soil near fertilizers under controlled temperature and soil moisture. Fertilizers added into soil were chemical fertilizer supplied as urea, organic fertilizer as rapeseed straw, and mixture of urea and rapeseed straw in a ratio of 7:3, respectively. 30 days after incubation, NH+4-N, NO-3-N and 1 N NaOH- hydrolyzed N increased in the soil at < 2.5 cm from the fertilizers in two lateral directions, and progressively decreased as the distance to the fertilizers increased. The results indicated the intensive available N release from the fertilizers and easy movement of fertilizer N. Taking into account of dense roots in cultivated soil layers and easy migration of N fertilizers, broadcast application of N fertilizers could be efficient in the middle growing periods of crops. There was neither obvious influence of urea application on urease activity nor significant correlation between urease activity and NH4+-N in the soil. Therefore, it seems reasonable to suggest that urea hydrolysis catalyzed by urease might be fast, unlikely the rate-limiting step in the process of urea transformation into NH4+-N. Further study showed the high activities of saccharase and protease in the soil only at 0.25 cm from the organic fertilizers added either in pure rape straw or mixture with urea. Saccharase and protease on the interface between organic fertilizer and soil could thus accelerate N release of organic fertilizers as available forms through organic N decomposition, resulting in the high available N pools in the soil near organic fertilizers.


Author(s):  
Daniel Gärttling ◽  
Hannes Schulz

AbstractIn the context of black soldier fly (BSF) rearing, often the residues from production — mainly faeces but also undigested substrate — are addressed as frass in a broader sense. As BSF production is expanding, the valorization of BSF frass as organic fertilizer is gaining importance. However, in contrast to established organic fertilizers, little is known on the properties and variation of this by-product, which is essential for assessing possible application purposes. To elaborate a first overview on this relatively new waste stream, BSF frass analyses from the literature and anonymized frass analyses enquired from BSF producers were compiled. For a possible agricultural use as a fertilizer, their nutrient patterns were assessed. With a balanced nitrogen:phosphorous pentoxide:potassium oxide (N:P2O5:K2O) ratio of 1:0.9:1.1, BSF frass can be characterized as a slightly alkaline (pH 7.5), nutrient-rich compound fertilizer, with the nutrient and especially the micronutrient contents showing high variation. The comparably high carbon-to-nitrogen ratio and low shares of ammonium nitrogen indicate a limited immediate nutrient release and point to possible applications of frass as a long-term fertilizer. The use of frass as an organic fertilizer as one element in a fertilization strategy is promising. By improving nutrient cycling back to the field, BSF frass can represent an important element of sustainable circular agriculture. However, more information on BSF feed and production systems needs to be combined with the nutrient analyses to better understand the variation in frass nutrient contents.


1994 ◽  
Vol 74 (1) ◽  
pp. 167-168 ◽  
Author(s):  
Bernard Gagnon ◽  
Sylvain Berrouard

An experiment was conducted to evaluate the potential of different organic wastes from the agri-food industry for growing greenhouse tomato (Lycopersicon esculentum Mill. 'Vision') transplants. The organic materials were thoroughly mixed with a peat–compost growing medium prior to transplanting. Meal from blood, feathers, meat, crab shells, fish, cottonseed and whey by-products produced the best growth, significantly increasing the shoot dry weight by 57–83 % compared with non-fertilized plants. Key words:Lycopersicon esculentum, organic fertilizer, peat, tomato, mineralization, nitrogen


2020 ◽  
Vol 4 (1) ◽  
pp. 162
Author(s):  
Supattra Kullawong ◽  
Satit Aditto ◽  
Bénédicte Chambon ◽  
Arunee Promkhambut

Since 2000, farmers in Northeast Thailand have planted more than 5,000 sq km of rubber on land previously devoted to agriculture. The expansion of rubber led to a significant increase in tree cover in Northeast Thailand. Rubber prices peaked in 2011 and since then farmers have had to adjust to lower prices. Little research has documented how farmers responded to low rubber prices. This paper seeks to describe how small-scale rubber farmers use fertilizer in a region that did not historically grow rubber during a period of low rubber prices. We collected data from structured interviews with 29 farmers in Subsomboon village in Khon Kaen province, Northeast Thailand. Most farmers reported that they reduced fertilizer costs by reducing the number of times they applied fertilizer, as well as changing to cheaper brands and/or using organic fertilizer. The majority of farmers still used large amounts of chemical fertilizers, either alone or in combination with commercial organic fertilizers with unknown nutrient contents. The N and P2O5 contents of the chemical fertilizer alone were consistent with national recommendations (82.0–137.6 kg N/ha/y and 33.3–97.7 kg P2O5/ha/y). Thai national recommendations for rubber, however, were developed for rubber plantations in traditional planting areas where rubber has been grown for over a century, and are considered by many experts to be high. The study’s findings indicated that small scale rubber farmers would benefit from recommendations for fertilizer applications that respond to variations in rubber prices, while taking into account the diversity of individual household characteristics and goals. To optimize recommendations that sustain the growth and yield of rubber, limit the effects of environmental externalities, and maintain rubber’s profitability, policymakers require detailed information on the diverse situations in which rubber is grown. This requires experimental research that tests a variety of fertilization practices under different biological and physical conditions.


2021 ◽  
Vol 7 (1) ◽  
pp. 31-38
Author(s):  
Fazlul Wahyudi ◽  
Bambang J. Priatmadi ◽  
Joko Purnomo

In coal mine reclamation activities, topsoil is generally used as the top layer on the reclamation land surface and the primary material in the growing medium for reclamation plant seeds due to its abundant availability. Topsoil generally has a low fertility rate because the soil layers between horizons have been mixed. Improvement of topsoil quality can be performed by adding organic fertilizers. This study aimed to identify the effect of organic fertilizers, liquid complementary fertilizers (LCF), and their interactions on selected soil's chemical properties from the topsoil used as a seed growing medium. This study used a factorial completely randomized design (CRD) with two factors, consisting of organic fertilizer factors (guano phosphate, Subur Ijo, vermicompost) and LCF factors (IMO, liquid smoke, Vermiwash). The results showed that the independent treatment of organic fertilizers and LCF had a very significant effect on pH. The independent treatment of organic fertilizers had a very significant effect on organic C and Total K. Meanwhile, the interaction between the two treatments had a very significant effect on the Total N and Total P of the growing media. The addition of organic fertilizers and LCF can improve topsoil quality to be used as a medium for growing media.


Author(s):  
Ayşen Akay

Vermicompost production and applications are increasing in our country recently. There are also many commercial products on the market. Vermicompost may act both as soil conditions and organic fertilizer. In addition to the effect of this product on improving the physical properties of the soil; the effect of plant growth on different plants should be studied. In this study conducted for this purpose; commercially produced radish (Raphanus sativus L.) cv. “Cherry Belle” was planted in growing medium mixed with different doses of vermicompost (0 - 2.5 – 5 – 10 %). In order to determine NPK and NPK + Fe. Zn fertilizer needs of the plants, these elements contained fertilizers were applied. According to the pot experiment results, important increases in some element contents and fresh root weights of radish plant were determined with increasing vermicompost applications. The average fresh root weight changed between 47.89-77.70 g pot-1. The average N concentration of in leaves and in roots changed between 3.09-4.69 % and 1.19-2.67 %, respectively. The K of in leaves and in roots changed between 1.27-1.46 % and 1.39-2.13 %, respectively, and the P concentration of in leaves and in roots changed between 0.46-0.50 % and 0.36-0.45 %, respectively. Application of vermicompost had statistically significant effect on growth of radish.


HortScience ◽  
2012 ◽  
Vol 47 (2) ◽  
pp. 198-204 ◽  
Author(s):  
Valérie Gravel ◽  
Martine Dorais ◽  
Claudine Ménard

Organically grown greenhouse sweet pepper crops, as is the case with most year-around greenhouse crops, rely on pre-grown transplants. Production of adequately balanced (source and sink strength potential) healthy organic sweet pepper transplants is a challenge and is often related to early and total harvested yields. Liquid and/or solid organic fertilizers for greenhouse sweet pepper transplants were compared with a conventional liquid fertilizer. Transplants were grown under greenhouse conditions and inoculated, or not, with a beneficial microbial agent, Trichoderma harzianum Rifai, strain KRL-AG2 (Rootshield®). Medium respiration (CO2 efflux) and fluorescein diacetate (FDA) hydrolysis analysis showed a higher microbial activity in the liquid organic fertilizer treatment. Higher microbial activity was observed after 10 weeks than at 5 weeks after transplanting. Transplant development was greater in the liquid conventional fertilizer treatment compared with the two organic treatments. Transplants that received liquid organic fertilizer had greater development compared with transplants that only received water in addition to the initial solid fertilizer. Organic amendment mineralization did not completely fulfill transplant nutrient requirement compared with conventional transplants. Solid fertilization in the growing medium affected plant growth during the first 5 weeks but not after 10 weeks after transplanting. Solid and liquid organic fertilizers at a higher concentration should be provided to reach a similar transplant development because conventional seedlings or other slow-release sources of solid amendments should be added to the growing medium to keep an adequate and constant nutrient release. Providing a beneficial agent to the organic growing medium increased its biological activity but had no effect on seedling growth during this study. Solid organic fertilization (1600 mL·m−3 of shrimp meal with 50 mL·m−3 of kelp meal) combined with an organic liquid fertilization should be used in combination with inoculation with T. harzianum to obtain high-quality organic sweet pepper transplants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lampet Wongsaroj ◽  
Ratmanee Chanabun ◽  
Naruemon Tunsakul ◽  
Pinidphon Prombutara ◽  
Somsak Panha ◽  
...  

AbstractNortheastern Thailand relies on agriculture as a major economic activity, and has used high levels of agrochemicals due to low facility, and salty sandy soil. To support soil recovery and sustainable agriculture, local farmers have used organic fertilizers from farmed animal feces. However, knowledge about these animal fecal manures remains minimal restricting their optimal use. Specifically, while bacteria are important for soil and plant growth, an abundance and a diversity of bacterial composition in these animal fecal manures have not been reported to allow selection and adjustment for a more effective organic fertilizer. This study thereby utilized metagenomics combined with 16S rRNA gene quantitative PCR (qPCR) and sequencing to analyze quantitative microbiota profiles in association with nutrients (N, P, K), organic matters, and the other physiochemical properties, of the commonly used earthworm manure and other manures from livestock animals (including breed and feeding diet variations) in the region. Unlike the other manures, the earthworm manure demonstrated more favorable nutrient profiles and physiochemical properties for forming fertile soil. Despite low total microbial biomass, the microbiota were enriched with maximal OTUs and Chao richness, and no plant pathogenic bacteria were found based on the VFDB database. The microbial metabolic potentials supported functions to promote crop growth, such as C, N and P cyclings, xenobiotic degradation, and synthesis of bioactive compounds. Pearson’s correlation analyses indicated that the quantitative microbiota of the earthworm manure were clustered in the same direction as N, and conductivity, salinity, and water content were essential to control the microbiota of animal manures.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 332
Author(s):  
Hayden Fischer ◽  
Nicholas Romano ◽  
Amit Kumar Sinha

Nutritionally unbalanced organic waste can be converted into potential resources for animal and plant farming by culturing black soldier fly (Hermetia illucens) larvae (BSFL) and prepupae (BSFP). BSFL and BSFP are rich sources of protein and lipids, while the leftover excrement called “frass” can be used as an organic fertilizer. Using readily available resources, BSFL were cultured on spent coffee, donut dough or an equal blend for 35 days. Survival, productivity, daily pupation and biochemical composition of BSFL and BSFP were measured along with the nitrogen-phosphorus-potassium values of the frass. Survival was highest in the blend compared (81%) to spent coffee (45%) or dough (24%); however, BSFL and BSFP were significantly longer and heavier from dough. Stage and food significantly influenced the protein, lipid and glycogen content of the BSFL and BSFP, which tended to be higher in the latter. While fatty acids were often significantly higher in BSFL fed spent coffee, the amino acid composition of BSFL was generally higher in dough. Frass from the blend had significantly highest nitrogen content, while potassium and phosphorus were significantly higher and lower from spent coffee, respectively. Although coffee and donut dough were suboptimal substrates for BSFL, a blend of these produced BSFL and frass that were nutritionally comparable to soybean meal and many organic fertilizers, respectively.


Sign in / Sign up

Export Citation Format

Share Document