scholarly journals Uses of Selenium Nanoparticles in the Plant Production

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2229
Author(s):  
Iqra Bano ◽  
Sylvie Skalickova ◽  
Hira Sajjad ◽  
Jiri Skladanka ◽  
Pavel Horky

Plant production today depends on the ability of agriculturists to transport and recycle minerals, particularly those minerals which are nutritionally important to animals and human beings, through various agriculture products. It is important to note that the attenuation of these mineral deposits by green plants, as well as their subsequent role in the production of organic compounds, is fundamental to almost all known forms of life. Selenium (Se) is among those trace mineral which are crucial for the maintenance of plant physiology. The significance, production, and biological effects of this element, as well as its application in sustainable development, are remaining an interesting topic of discussion. Moreover, there has been a huge rise in the potential applications of nanotechnology in the food and agriculture industries. Several studies have been conducted on the various biological activities of selenium nanoparticles (SeNPs) and their biosynthesis. There is plenty of research performed on the effects of Se in plant nutrition and physiology, but there is a lack of information about the effects of SeNPs in SeNPs toxicity, and other aspects of using SeNPs in agriculture. The current review is focused on recent information related to the effects and fate of SeNPs in agronomy. We also aimed attention at the primary sources and behavior of Se in different environments, such as soil, water, air, and plants. All the data provides an extremely fertile domain for future investigation and research.

2021 ◽  
Vol 38 (1) ◽  
pp. 117-124
Author(s):  
Bahar Aslanbay Güler ◽  
Esra İmamoğlu

Fucoxanthin is a xanthophyll pigment which occurs in marine brown seaweeds (macroalgae), diatoms and several microalgae species. It forms with chlorophyll a-c and several proteins, a major fucoxanthin-chlorophyll a/c complex, which transfers light energy to the photosynthesis center and plays a major role in light harvesting. Recent studies have reported that fucoxanthin has many physiological functions and biological effects, such as anti-obesity, antidiabetic, anti-inflammatory, anticancer and cardiovascular system protection. Therefore, this pigment is highly preferred for the prevention and treatment of various chronic diseases. In addition, potential applications of high value fucoxanthin can be found in cosmetic, food and feed industries. In this review paper, the historical development, characteristic properties and possible sources of fucoxanthin are extensively described. The potential biological activities of fucoxanthin are also discussed. Finally, brief overview of common applications and market analysis of commercial fucoxanthin are also reported.


2020 ◽  
Vol 16 (1) ◽  
pp. 80-84 ◽  
Author(s):  
Mohammadreza Khalesi ◽  
Fatemeh Mamashli ◽  
Bahram Goliaei ◽  
Ali A. Moosavi-Movahedi ◽  
Guy Derdelinckx

Background: Class II hydrophobin HFBII is a fungal protein with potential applications in pharmaceutical industry. Nevertheless, the antitumor activity of this protein has not been reported. Methods: In this study, natural type of Trichoderma reesei was cultivated in a submerged bioreactor to produce hydrophobin HFBII. The protein was purified using a reversed phase liquid chromatography, verified by MALDI-TOF, and then examined for its anticancer activity against T47D breast tumor cell line. Results: Different concentrations of hydrophobin HFBII from 1 nM to 500 μM were examined for this experiment. Hydrophobin HFBII with molecular weights of 7.0-7.2 kDa was achieved. The results of MTT assay showed that from the concentration of 100 μM and upwards, hydrophobin HFBII adversely affected the viability of the breast tumor cells. The IC50 value was reported to be 131 μM. Class II hydrophobin seems to be a very effective carrier for antitumor agent. Conclusion: This is the first report of HFBII cytotoxicity. However, there is lack of information regarding HFBII’s mechanism of action in cell death induction. Since, HFBII could play important roles in biomedicine, whether as a drug or a carrier for various kinds of pharmaceuticals, it is strongly suggested that its biological effects would be evaluated in detail.


2021 ◽  
Vol 37 (2) ◽  
pp. 269-280
Author(s):  
Priyanka Yadav ◽  
Arun Kumar Mishra ◽  
Harpreet Singh

Bryophyllum pinnatum (Lam.) Oken belongs to the family Crassulaceae, one of the important medicinal plants which has great significances to treat various disorders, ailments in human beings. This study tells phytochemical constituents and pharmacological activities of extracts of Bry.pin(Lam.) Oken. The aim of this review is to emphasise the recent and advanced research on different parts of plant extracts used. The forty secondary metabolites were isolated by different researchers where the most important includes flavonoids, terpenoids, glycosides, steroids and these secondary metabolites were responsible for various biological actions as antioxidant, anticancer, antidiabetic, anti-inflammatory, analgesics, wound healing and hepatoprotective actions which are incorporated. All this information gathered into this review were collected by using electronic search as PubMed, Research gate, Elsevier, Google scholar and Web science. Further studies also required on extracts for getting more information about mechanism of action, biological effects, safety, dosage required. By observing the medicinal uses and pharmacological profile of Bry.pin(Lam.) Oken might be transferred into a new various herbal formulation and can report for future.


2010 ◽  
Vol 4 (1-2) ◽  
pp. 97-111
Author(s):  
Abdulrazaq Kilani

The menace of cultism in Nigeria society in general and our educational institutions in particular has reached an alarming stage that requires affirmative actions from all stakeholders. The scourge of cultism has claimed many lives of our youths and no serious authority can fold its arms and allow it to continue. It appears that the various efforts at curbing the menace have yielded no result. The corruption in most facets of our national life has finally subdued the educational institutions, which used to be the pride of place in the past. Most families are astonished to find out that children sent to school to learn and become better human beings in the society have initiated themselves into cult groups. The emergency of secret cultism has been characterized by some violent activities which include, physical torture of new recruits, maiming and killing of rival cult members and elimination of real and perceived enemies. Nigeria, Africa's most populous country, is composed of more than 250 ethnic groups with 36 states and one federal territory (Abuja). There are three major religions namely Islam (50%), Christianity (40%), and Africa Indigenous Religions (10%). The effect of globalization is also making other new religious movements to be making inroads into Nigeria. Nigeria has a population of about 141 million people (2006 census). Nigeria which is rich in both human and material resources is a country that is facing a lot of developmental challenges in almost all sectors due to poor leadership. The menace of cultism especially among youths and some influential people in the society represents one of the distortion facing the popular ‘giant’ of Africa. The aim of this chapter is to bring into the fore the menace of cultism in modern Nigeria as a brand of terrorism mind not the fact that there are even religious cults in both the developed and developing societies. The paper also adopted an Islamic lens to provide an analysis of the terror of cultism in contemporary Nigeria.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 523b-523 ◽  
Author(s):  
Erin James ◽  
Marc van Iersel

The quantity and quality of available water in the Southeastern United States continues to decline as demands on limited resources increase. Growers will soon be forced to comply with legal limitations on water consumption and limits on nutrient runoff from their operations. A lack of information on standard growing practices using alternative irrigation systems such as ebb and flow is hindering their acceptance and implementation. We are currently conducting a series of experiments to establish basic growing guidelines for the use of ebb and flow in the greenhouse in bedding plant production. In the third of these experiments, Petunia × hybrida Hort. Vilm.-Andr. `Blue Frost' and Begonia × hiemalis Fotsch. `Ambassador Scarlet' were grown for 5 weeks on ebb and flow tables with fertigation solutions (225 ppm N) containing three different levels of phosphorus (0, 50, and 100 ppm). Three soilless media were also used, which varied in their percentage content of vermiculite, perlite, pine bark and coconut coir. For both the begonias and petunias dry mass of the shoot was greatest in plants grown with higher levels of phosphorus. In comparison to plants grown with 0 ppm phosphorous, petunias and begonias grown with 50 or 100 ppm P were 44% and 25% greater in mass, respectively. However, begonias had 38% more flowers when fertigated with the higher levels of phosphorous while petunias flowered earlier with 0 ppm P fertigation solution. The electrical conductivity of the media did not change significantly over the course of the growing period, but the pH dropped by an average of 1 over the same time interval.


2018 ◽  
Vol 25 (14) ◽  
pp. 1663-1681 ◽  
Author(s):  
Chun-Ting Lee ◽  
Heng-Chun Kuo ◽  
Yung-Hsiang Chen ◽  
Ming-Yen Tsai

The polysaccharides in many plants are attracting worldwide attention because of their biological activities and medical properties, such as anti-viral, anti-oxidative, antichronic inflammation, anti-hypertensive, immunomodulation, and neuron-protective effects, as well as anti-tumor activity. Denodrobium species, a genus of the family orchidaceae, have been used as herbal medicines for hundreds of years in China due to their pharmacological effects. These effects include nourishing the Yin, supplementing the stomach, increasing body fluids, and clearing heat. Recently, numerous researchers have investigated possible active compounds in Denodrobium species, such as lectins, phenanthrenes, alkaloids, trigonopol A, and polysaccharides. Unlike those of other plants, the biological effects of polysaccharides in Dendrobium are a novel research field. In this review, we focus on these novel findings to give readers an overall picture of the intriguing therapeutic potential of polysaccharides in Dendrobium, especially those of the four commonly-used Denodrobium species: D. huoshanense, D. offininale, D. nobile, and D. chrysotoxum.


2004 ◽  
Vol 69 (3) ◽  
pp. 499-510 ◽  
Author(s):  
Petra Beranová ◽  
Karel Chalupský ◽  
Gustav Entlicher

Nω-Hydroxy-L-arginine (NOHA) is a stable intermediate in NO formation from L-arginine catalyzed by NO synthase (NOS). Apparently, NOHA can be released and serve as a stable reserve NO donor (as a substrate of NOS) or transported and exert its own biological effects. It shows endothelium-dependent as well as endothelium-independent vasorelaxant activity. The latter case indicates that NOHA can be metabolized by pathways independent of NOS. These possibilities are discussed in detail. Of the available NOHA homologues homo-NOHA is a good substrate of NOS while nor-NOHA seems to be a very poor substrate of this enzyme. On the contrary, nor-NOHA exerts arginase inhibitory activity 20 times higher than NOHA whereas homo-NOHA is inactive. Detailed investigation of biological activities of NOHA and its homologues seems to be promising from the pharmacological point of view. A review with 43 references.


2021 ◽  
pp. jclinpath-2020-206927
Author(s):  
Maryam Ahmed Al Barashdi ◽  
Ahlam Ali ◽  
Mary Frances McMullin ◽  
Ken Mills

The leucocyte common antigen, protein tyrosine phosphatase receptor type C (PTPRC), also known as CD45, is a transmembrane glycoprotein, expressed on almost all haematopoietic cells except for mature erythrocytes, and is an essential regulator of T and B cell antigen receptor-mediated activation. Disruption of the equilibrium between protein tyrosine kinase and phosphatase activity (from CD45 and others) can result in immunodeficiency, autoimmunity, or malignancy. CD45 is normally present on the cell surface, therefore it works upstream of a large signalling network which differs between cell types, and thus the effects of CD45 on these cells are also different. However, it is becoming clear that CD45 plays an essential role in the innate immune system and this is likely to be a key area for future research. In this review of PTPRC (CD45), its structure and biological activities as well as abnormal expression of CD45 in leukaemia and lymphoma will be discussed.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 542
Author(s):  
Gustavo Penteado Battesini Carretero ◽  
Greice Kelle Viegas Saraiva ◽  
Magali Aparecida Rodrigues ◽  
Sumika Kiyota ◽  
Marcelo Porto Bemquerer ◽  
...  

In a large variety of organisms, antimicrobial peptides (AMPs) are primary defenses against pathogens. BP100 (KKLFKKILKYL-NH2), a short, synthetic, cationic AMP, is active against bacteria and displays low toxicity towards eukaryotic cells. BP100 acquires a α-helical conformation upon interaction with membranes and increases membrane permeability. Despite the volume of information available, the action mechanism of BP100, the selectivity of its biological effects, and possible applications are far from consensual. Our group synthesized a fluorescent BP100 analogue containing naphthalimide linked to its N-terminal end, NAPHT-BP100 (Naphthalimide-AAKKLFKKILKYL-NH2). The fluorescence properties of naphthalimides, especially their spectral sensitivity to microenvironment changes, are well established, and their biological activities against transformed cells and bacteria are known. Naphthalimide derived compounds are known to interact with DNA disturbing related processes as replication and transcription, and used as anticancer agents due to this property. A wide variety of techniques were used to demonstrate that NAPHT-BP100 bound to and permeabilized zwitterionic POPC and negatively charged POPC:POPG liposomes and, upon interaction, acquired a α-helical structure. Membrane surface high peptide/lipid ratios triggered complete permeabilization of the liposomes in a detergent-like manner. Membrane disruption was driven by charge neutralization, lipid aggregation, and bilayer destabilization. NAPHT-BP100 also interacted with double-stranded DNA, indicating that this peptide could also affect other cellular processes besides causing membrane destabilization. NAPHT-BP100 showed increased antibacterial and hemolytic activities, compared to BP100, and may constitute an efficient antimicrobial agent for dermatological use. By conjugating BP100 and naphthalimide DNA binding properties, NAPHT-BP100 bound to a large extent to the bacterial membrane and could more efficiently destabilize it. We also speculate that peptide could enter the bacteria cell and interact with its DNA in the cytoplasm.


Author(s):  
Tatsunori Suzuki ◽  
Takahiro Kishikawa ◽  
Tatsuyuki Sato ◽  
Norihiko Takeda ◽  
Yuki Sugiura ◽  
...  

AbstractMutational activation of the KRAS gene occurs in almost all pancreatic ductal adenocarcinoma (PDAC) and is the earliest molecular event in their carcinogenesis. Evidence has accumulated of the metabolic reprogramming in PDAC, such as amino acid homeostasis and autophagic flux. However, the biological effects of KRAS mutation on metabolic reprogramming at the earlier stages of PDAC carcinogenesis are unclear. Here we report dynamic metabolic reprogramming in immortalized human non-cancerous pancreatic ductal epithelial cells, in which a KRAS mutation was induced by gene-editing, which may mimic early pancreatic carcinogenesis. Similar to the cases of PDAC, KRAS gene mutation increased the dependency on glucose and glutamine for maintaining the intracellular redox balance. In addition, the intracellular levels of amino acids were significantly decreased because of active protein synthesis, and the cells required greater autophagic flux to maintain their viability. The lysosomal inhibitor chloroquine significantly inhibited cell proliferation. Therefore, metabolic reprogramming is an early event in carcinogenesis initiated by KRAS gene mutation, suggesting a rationale for the development of nutritional interventions that suppress or delay the development of PDAC.


Sign in / Sign up

Export Citation Format

Share Document