scholarly journals Characterisation of Colistin -Resistant Enterobacterales and Acinetobacter Strains Carrying mcr Genes from Asian Aquaculture Products

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 838
Author(s):  
Alžběta Kalová ◽  
Tereza Gelbíčová ◽  
Søren Overballe-Petersen ◽  
Eva Litrup ◽  
Renáta Karpíšková

Aquaculture systems are widely recognised as hotspots for horizontal gene transfer, and the need for screening for bacteria carrying antimicrobial resistance genes in aquaculture systems is becoming more important. In this study, we characterised seventeen bacterial strains (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and A. nosocomialis) resistant to colistin originating from retailed aquaculture products imported from Vietnam to the Czech Republic. The mcr-1.1 gene was found located on plasmid types IncHI2, IncI2, and IncX4, as well as on the rarely described plasmid types IncFIB-FIC and IncFIB(K), phage-like plasmid p0111, and on the chromosome of E. coli. One E. coli strain carried the mcr-3.5 gene on IncFII(pCoo) plasmid in addition to the mcr-1.1 gene located on IncHI2 plasmid. K. pneumoniae was found to carry the mcr-1.1 and mcr-8.2 genes on IncFIA(HI1) plasmid. The mcr-4.3 gene was found on similar untypeable plasmids of A. baumannii and A. nosocomialis strains, pointing to the possible interspecies transfer of plasmids carrying the mcr-4 gene. Our results highlight that some aquaculture products of Asian origin can represent an important source of variable plasmids carrying mcr genes. The results showed an involvement of phages in the incorporation of the mcr-1 gene into plasmids or the chromosome in E. coli strains from aquaculture. The detection of E. coli with the mcr-1 gene in the chromosome points to the risks associated with the stabilisation of the mcr genes in the bacterial chromosome.

2011 ◽  
Vol 55 (6) ◽  
pp. 3005-3007 ◽  
Author(s):  
Ivan Literak ◽  
Radim Petro ◽  
Monika Dolejska ◽  
Erika Gruberova ◽  
Hana Dobiasova ◽  
...  

ABSTRACTThe study was performed in the Czech Republic during 2007 to 2009. OfEscherichia coliisolates from 275 children aged 6 weeks, 36% (n= 177) were resistant to 1 to 7 antibiotics. Of isolates from 253 children aged 6 to 17 years, 24% (n= 205) were resistant to 1 to 5 antibiotics. There was no significant difference in the prevalences of antibiotic-resistantE. coliisolates between these groups of children, even though the consumptions of antibiotics were quite different.


2020 ◽  
Vol 8 (6) ◽  
pp. 827 ◽  
Author(s):  
Ana Carolina M. Santos ◽  
Rosa M. Silva ◽  
Tiago B. Valiatti ◽  
Fernanda F. Santos ◽  
José F. Santos-Neto ◽  
...  

Escherichia coli EC121 is a multidrug-resistant (MDR) strain isolated from a bloodstream infection of an inpatient with persistent gastroenteritis and T-zone lymphoma that died due to septic shock. Despite causing an extraintestinal infection, previous studies showed that it did not have the usual characteristics of an extraintestinal pathogenic E. coli. Instead, it belonged to phylogenetic group B1 and harbored few known virulence genes. To evaluate the pathogenic potential of strain EC121, an extensive genome sequencing and in vitro characterization of various pathogenicity-associated properties were performed. The genomic analysis showed that strain EC121 harbors more than 50 complete virulence genetic clusters. It also displays the capacity to adhere to a variety of epithelial cell lineages and invade T24 bladder cells, as well as the ability to form biofilms on abiotic surfaces, and survive the bactericidal serum complement activity. Additionally, EC121 was shown to be virulent in the Galleria mellonella model. Furthermore, EC121 is an MDR strain harboring 14 antimicrobial resistance genes, including blaCTX-M-2. Completing the scenario, it belongs to serotype O154:H25 and to sequence type 101-B1, which has been epidemiologically linked to extraintestinal infections as well as to antimicrobial resistance spread. This study with E. coli strain EC121 shows that clinical isolates considered opportunistic might be true pathogens that go underestimated.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 780
Author(s):  
Lorena Varriale ◽  
Ludovico Dipineto ◽  
Tamara Pasqualina Russo ◽  
Luca Borrelli ◽  
Violante Romano ◽  
...  

Antimicrobial resistance is a public health concern worldwide and it is largely attributed to the horizontal exchange of transferable genetic elements such as plasmids carrying integrons. Several studies have been conducted on livestock showing a correlation between the systemic use of antibiotics and the onset of resistant bacterial strains. In contrast, although companion birds are historically considered as an important reservoir for human health threats, little information on the antimicrobial resistance in these species is available in the literature. Therefore, this study was aimed at evaluating the antimicrobial resistance of Escherichia coli and Pseudomonasaeruginosa isolated from 755 companion birds. Cloacal samples were processed for E. coli and P. aeruginosa isolation and then all isolates were submitted to antimicrobial susceptibility testing. P. aeruginosa was isolated in 59/755 (7.8%) samples, whereas E. coli was isolated in 231/755 (30.7%) samples. Most strains showed multidrug resistance. This study highlights that companion birds may act as substantial reservoirs carrying antimicrobial resistance genes which could transfer directly or indirectly to humans and animals, and from a One Health perspective this risk should not be underestimated.


2020 ◽  
Author(s):  
B Constantinides ◽  
KK Chau ◽  
TP Quan ◽  
G Rodger ◽  
M Andersson ◽  
...  

ABSTRACTEscherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonised with diverse populations of E. coli, Klebsiella pneumoniae and Klebsiella oxytoca, including both antimicrobial-resistant and susceptible strains. Using whole genome sequencing (WGS) of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies which may vary as a result of different inputs and selection pressures. WGS of 46 contemporaneous patient isolates identified one (2%; 95% CI 0.05-11%) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10% of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including blaCTX-M, blaSHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention.IMPORTANCEEscherichia coli and Klebsiella spp. cause a wide range of bacterial infections, including bloodstream, urine and lung infections. Previous studies have shown that sink drains in hospitals may be part of transmission chains in outbreaks of antimicrobial-resistant E. coli and Klebsiella spp., leading to colonisation and clinical disease in patients. We show that even in non-outbreak settings, contamination of sink drains by these bacteria is common across hospital wards, and that many antimicrobial resistance genes can be found and potentially exchanged in these sink drain sites. Our findings demonstrate that the colonisation of handwashing sink drains by these bacteria in hospitals is likely contributing to some infections in patients, and that additional work is needed to further quantify this risk, and to consider appropriate mitigating interventions.


2014 ◽  
Vol 80 (12) ◽  
pp. 3656-3666 ◽  
Author(s):  
Basanta Kumar Biswal ◽  
Ramzi Khairallah ◽  
Kareem Bibi ◽  
Alberto Mazza ◽  
Ronald Gehr ◽  
...  

ABSTRACTWastewater discharges may increase the populations of pathogens, includingEscherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenicEscherichia coli(UPEC), the most abundantE. colipathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766E. coliisolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.


2011 ◽  
Vol 56 (No. 4) ◽  
pp. 149-155 ◽  
Author(s):  
P. Alexa ◽  
L. Konstantinova ◽  
Z. Sramkova-Zajacova

A survey to estimate the prevalence of verotoxigenic E. coli (VTEC) or enterohaemorrhagic E. coli (EHEC) in rectal swabs from healthy dairy cattle aged three weeks, three months and one year was conducted in three herds from the Czech Republic. Screening for the presence of the stx1, stx2 and eaeA genes in faecal swab cultures was performed by PCR, and in positive samples, isolated colonies were examined. Immunomagnetic separation was used for the isolation of the VTEC serogroup O157 from samples. VTEC were detected in animals from all three herds under study. In the group of 3-week-old calves, VTEC were only detected in samples collected in the summer months. However, in the other age-groups, VTEC were detected in both the summer and winter months. EHEC shedding was observed in 30 to 100% of the total samples collected from cattle aged three months and one year in the summer months, and in 30 to 60% of samples taken in the winter months. EHEC strains of serogroup O157 were detected in two herds. The range of verotoxins shed by VTEC isolates of serogroup O157 differed between herds. Besides serogroup O157, additional EHEC belonging to the antigen groups O26, O103, O128 and O153 have been identified, and in some of them, no somatic antigen was detected.


2009 ◽  
Vol 72 (5) ◽  
pp. 1082-1088 ◽  
Author(s):  
AHLEM JOUINI ◽  
KARIM BEN SLAMA ◽  
YOLANDA SÁENZ ◽  
NAOUEL KLIBI ◽  
DANIELA COSTA ◽  
...  

Phenotypic and genotypic characterization of antimicrobial resistance was conducted for 98 Escherichia coli isolates recovered from 40 food samples of animal origin (poultry, sheep, beef, fish, and others) obtained in supermarkets and local butcheries in Tunis during 2004 and 2005. Susceptibility to 15 antimicrobial agents was tested by disk diffusion and agar dilution methods, the mechanisms of resistance were evaluated using PCR and sequencing methods, and the clonal relationship among isolates was evaluated using pulsed-field gel electrophoresis. High resistance was detected to tetracycline, sulphonamides, nalidixic acid, ampicillin, streptomycin, and trimethoprim-sulfamethoxazole (29 to 43% of isolates), but all isolates were susceptible to cefotaxime, ceftazidime, cefoxitin, azthreonam, and amikacin. One-third of the isolates had multiresistant phenotypes (resistance to at least five different families of antimicrobial agents). Different variants of blaTEM, tet, sul, dfrA, aadA, and aac(3) genes were detected in most of the strains resistant to ampicillin, tetracycline, sulphonamide, trimethoprim, streptomycin, and gentamicin, respectively. The presence of class 1 and class 2 integrons was studied in 15 sulphonamide-resistant unrelated E. coli strains, and 14 of these strains harbored class 1 integrons with five different arrangements of gene cassettes, and a class 2 integron with the dfrA1 + sat + aadA1 arrangement was found in one strain. This study revealed the high diversity of antimicrobial resistance genes, some of them included in integrons, in E. coli isolates of food origin.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Ebenezer Foster-Nyarko ◽  
Nabil-Fareed Alikhan ◽  
Anuradha Ravi ◽  
Gaëtan Thilliez ◽  
Nicholas Thomson ◽  
...  

Increasing contact between humans and non-human primates provides an opportunity for the transfer of potential pathogens or antimicrobial resistance between different host species. We have investigated genetic diversity and antimicrobial resistance in Escherichia coli isolates from a range of non-human primates dispersed across the Gambia: patas monkey (n=1), western colobus monkey (n=6), green monkey (n=14) and guinea baboon (n=22). From 43 stools, we recovered 99 isolates. We performed Illumina whole-genome shotgun sequencing on all isolates and nanopore long-read sequencing on isolates with antimicrobial resistance genes. We inferred the evolution of E. coli in this population using the EnteroBase software environment. We identified 43 sequence types (ten of them novel), spanning five of the eight known phylogroups of E. coli. Many of the observed sequence types and phylotypes from non-human primates have been associated with human extra-intestinal infection and carry virulence characteristics associated with disease in humans, particularly ST73, ST217 and ST681. However, we found a low prevalence of antimicrobial resistance genes in isolates from non-human primates. Hierarchical clustering showed that ST442 and ST349 from non-human primates are closely related to isolates from human infections, suggesting recent exchange of bacteria between humans and monkeys. Our results are of public health importance, considering the increasing contact between humans and wild primates.


2021 ◽  
Vol 15 (11) ◽  
pp. 1755-1760
Author(s):  
Jorge Acosta-Dibarrat ◽  
Edgar Enriquez-Gómez ◽  
Martín Talavera-Rojas ◽  
Edgardo Soriano-Vargas ◽  
Armando Navarro ◽  
...  

Introduction: Commensal Escherichia coli is defined as bacteria without known virulence factors that could be playing a specific role in some diseases; however, they could be responsible to disseminate antimicrobial resistance genes to other microorganisms. This study aimed to characterize the commensal E. coli isolates obtained from slaughtered sheep in the central region of Mexico. Methodology: Isolates were classified as commensal E. coli when distinctive genes related to diarrheagenic pathotypes (stx1, stx2, eae, bfp, LT, stp, ipaH, and aggR) were discarded by PCR. Identification of serotype, phylogenetic group, and antimicrobial resistance was also performed. Results: A total of 41 isolates were characterized. The phylogenetic groups found were B1 in 37 isolates (90.2%), A in 2 (4.8%), and 1 isolate (2.4%) for C and D groups. Serotypes associated with diarrhea in humans (O104:H2 and O154:NM) and hemolytic uremic syndrome (O8:NM) were detected. Thirty-three isolates (80%) were resistant to ceftazidime, 23 (56%), to tetracycline 8 (19.5%) to ampicillin, and 1 to amikacin. Six isolates (14.6%) were multidrug-resistant. Conclusions: This study provides new information about commensal E. coli in slaughtered sheep, high percentages of resistance to antibiotics, and different profiles of antimicrobial resistance were found, their dissemination constitute a risk factor towards the consuming population.


2020 ◽  
Vol 6 (7) ◽  
Author(s):  
Bede Constantinides ◽  
Kevin K. Chau ◽  
T. Phuong Quan ◽  
Gillian Rodger ◽  
Monique I. Andersson ◽  
...  

Escherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonized with diverse populations of E. coli , Klebsiella pneumoniae and Klebsiella oxytoca , including both antimicrobial-resistant and susceptible strains. Using whole-genome sequencing of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies, which may vary as a result of different inputs and selection pressures. Whole-genome sequencing of 46 contemporaneous patient isolates identified one (2 %; 95 % CI 0.05–11 %) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10 % of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including bla CTX-M, bla SHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention. This article contains data hosted by Microreact.


Sign in / Sign up

Export Citation Format

Share Document