scholarly journals Antifungal Carvacrol Loaded Chitosan Nanoparticles

Antibiotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Alberto Vitali ◽  
Annarita Stringaro ◽  
Marisa Colone ◽  
Alexandra Muntiu ◽  
Letizia Angiolella

The increased prevalence and incidence of fungal infections, of which Candida albicans represents one of the most life-threatening organisms, is prompting the scientific community to develop novel antifungal molecules. Many essential oils components are attracting attention for their interesting antifungal activities. Given the chemical and physical characteristics of these compounds, the use of appropriate nanodelivery systems is becoming increasingly widespread. In this study, chitosan nanoparticles were prepared using an ionic gelation procedure and loaded with the phenolic monoterpene carvacrol. After a bioassay guided optimization, the best nanoparticle formulation was structurally characterized by means of different spectroscopic (UV, FTIR and DLS) and microscopy techniques (SEM) and described for their functional features (encapsulation efficiency, loading capacity and release kinetics). The antifungal activity of this formulation was assayed with different Candida spp., both in planktonic and biofilm forms. From these studies, it emerged that the carvacrol loaded nanoparticles were particularly active against planktonic forms and that the antibiofilm activity was highly dependent on the species tested, with the C. tropicalis and C. krusei strains resulting as the most susceptible.

2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Jana Tits ◽  
Freya Cools ◽  
Kaat De Cremer ◽  
Katrijn De Brucker ◽  
Judith Berman ◽  
...  

ABSTRACT The occurrence and recurrence of mucosal biofilm-related Candida infections, such as oral and vulvovaginal candidiasis, are serious clinical issues. Vaginal infections caused by Candida spp., for example, affect 70 to 75% of women at least once during their lives. Miconazole (MCZ) is the preferred topical treatment against these fungal infections, yet it has only moderate antibiofilm activity. Through screening of a drug-repurposing library, we identified the quaternary ammonium compound domiphen bromide (DB) as an MCZ potentiator against Candida biofilms. DB displayed synergistic anti-Candida albicans biofilm activity with MCZ, reducing the number of viable biofilm cells 1,000-fold. In addition, the MCZ-DB combination also resulted in significant killing of biofilm cells of azole-resistant C. albicans, C. glabrata, and C. auris isolates. In vivo, the MCZ-DB combination had significantly improved activity in a vulvovaginal candidiasis rat model compared to that of single-compound treatments. Data from an artificial evolution experiment indicated that the development of resistance against the combination did not occur, highlighting the potential of MCZ-DB combination therapy to treat Candida biofilm-related infections.


Antibiotics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1142
Author(s):  
Rafaela Guimarães ◽  
Catarina Milho ◽  
Ângela Liberal ◽  
Jani Silva ◽  
Carmélia Fonseca ◽  
...  

The use of natural products to promote health is as old as human civilization. In recent years, the perception of natural products derived from plants as abundant sources of biologically active compounds has driven their exploitation towards the search for new chemical products that can lead to further pharmaceutical formulations. Candida fungi, being opportunistic pathogens, increase their virulence by acquiring resistance to conventional antimicrobials, triggering diseases, especially in immunosuppressed hosts. They are also pointed to as the main pathogens responsible for most fungal infections of the oral cavity. This increased resistance to conventional synthetic antimicrobials has driven the search for new molecules present in plant extracts, which have been widely explored as alternative agents in the prevention and treatment of infections. This review aims to provide a critical view and scope of the in vitro antimicrobial and antibiofilm activity of several medicinal plants, revealing species with inhibition/reduction effects on the biofilm formed by Candida spp. in the oral cavity. The most promising plant extracts in fighting oral biofilm, given their high capacity to reduce it to low concentrations were the essential oils extracted from Allium sativum L., Cinnamomum zeylanicum Blume. and Cymbopogon citratus (DC) Stapf.


2018 ◽  
Vol 18 (9) ◽  
pp. 759-778 ◽  
Author(s):  
Vartika Srivastava ◽  
Rajeev Kumar Singla ◽  
Ashok Kumar Dubey

Increased incidences of Candida infection have augmented morbidity and mortality in human population, particularly among severely immunocompromised patients and those having a long stay in hospitals (nosocomial infections). Many virulence factors and fitness attributes are reported to be associated with the pathogenicity of Candida sp. It can cause infections ranging from easily treatable superficial type to life-threatening invasive infections. Additionally, it has the capability to infect humans of all age groups. Indeed, overutilization of broad-spectrum antibiotics has further complicated the scenario by leading the emergence of less sensitive Candida strains especially non-albicans. Despite our developed armamentarium, the diagnosis and treatment of human fungal infections remain a challenge. This review focuses on the prevalence of Candida spp. as human pathogens with emerging resistance to existing anti-fungal drugs. Furthermore, factors and mechanisms contributing to the pathogenicity of Candida spp. and the challenges being faced in combating the devastating infections associated with these pathogens have been discussed. Moreover, pros and cons of the current and future anti-mycotic drugs have been analyzed.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4087
Author(s):  
Marta Szekalska ◽  
Aleksandra Citkowska ◽  
Magdalena Wróblewska ◽  
Katarzyna Winnicka

Fungal infections and invasive mycoses, despite the continuous medicine progress, are an important globally therapeutic problem. Multicompartment dosage formulations (e.g., microparticles) ensure a short drug diffusion way and high surface area of drug release, which as a consequence can provide improvement of therapeutic efficiency compared to the traditional drug dosage forms. As fucoidan is promising component with wide biological activity per se, the aim of this study was to prepare fucospheres (fucoidan microparticles) and fucoidan/gelatin microparticles with posaconazole using the one-step spray-drying technique. Pharmaceutical properties of designed fucospheres and the impact of the gelatin addition on their characteristics were evaluated. An important stage of this research was in vitro evaluation of antifungal activity of developed microparticles using different Candida species. It was observed that gelatin presence in microparticles significantly improved swelling capacity and mucoadhesiveness, and provided a sustained POS release. Furthermore, it was shown that gelatin addition enhanced antifungal activity of microparticles against tested Candida spp. strains. Microparticles formulation GF6, prepared by the spray drying of 20% fucoidan, 5% gelatin and 10% Posaconazole, were characterized by optimal mucoadhesive properties, high drug loading and the most sustained drug release (after 8 h 65.34 ± 4.10% and 33.81 ± 5.58% of posaconazole was dissolved in simulated vaginal fluid pH 4.2 or 0.1 M HCl pH 1.2, respectively).


2021 ◽  
Vol 7 (6) ◽  
pp. 451
Author(s):  
Georgios Karavalakis ◽  
Evangelia Yannaki ◽  
Anastasia Papadopoulou

Despite the availability of a variety of antifungal drugs, opportunistic fungal infections still remain life-threatening for immunocompromised patients, such as those undergoing allogeneic hematopoietic cell transplantation or solid organ transplantation. Suboptimal efficacy, toxicity, development of resistant variants and recurrent episodes are limitations associated with current antifungal drug therapy. Adjunctive immunotherapies reinforcing the host defense against fungi and aiding in clearance of opportunistic pathogens are continuously gaining ground in this battle. Here, we review alternative approaches for the management of fungal infections going beyond the state of the art and placing an emphasis on fungus-specific T cell immunotherapy. Harnessing the power of T cells in the form of adoptive immunotherapy represents the strenuous protagonist of the current immunotherapeutic approaches towards combating invasive fungal infections. The progress that has been made over the last years in this field and remaining challenges as well, will be discussed.


2021 ◽  
Vol 7 (5) ◽  
pp. 376
Author(s):  
Tobias Lahmer ◽  
Gonzalo Batres Baires ◽  
Roland M. Schmid ◽  
Johannes R. Wiessner ◽  
Jörg Ulrich ◽  
...  

Fungal peritonitis is a life-threatening condition which is not only difficult to diagnose, but also to treat. Following recent guidelines, echinocandins and azoles are the recommended antimycotics for the management of intra-abdominal Candida spp. infections, with a favor for echinocandins in critically ill patients. However, the new extended spectrum triazole isavuconazole also has a broad spectrum against Candida spp. Data on its target-site penetration are sparse. Therefore, we assessed isavuconazole concentrations and penetration ratios in ascites fluid of critically ill patients. Obtaining of Isavuconazole plasma and ascites fluid levels as well penetration ratios using paracentesis in critically ill patients. Isavuconazole concentrations were quantified in human plasma and ascites by a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method. Isavuconazole concentrations in plasma and ascites fluid were measured in sixteen critically ill patients. Isavuconazol levels in ascites fluid (1.06 µg/mL) were lower than plasma levels (3.08 µg/mL). Penetration ratio was 36%. In two out of sixteen patients, Candida spp., in detail C. glabrata and C. tropicalis, could be isolated. Cmax/MIC Ratio in plasma of 560 for C. glabrata and 2166 for C. tropicalis could be observed. Following our results, isavuconazole penetrates into ascites. Successful treatment in Candida spp. peritonitis depends on pathogen susceptibility.


2021 ◽  
Author(s):  
Qandeel Zahra ◽  
Muhammad Usman Minhas ◽  
Samiullah Khan ◽  
Pao-Chu Wu ◽  
Muhammad Suhail ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 151
Author(s):  
Alexie Mayor ◽  
Adélaïde Chesnay ◽  
Guillaume Desoubeaux ◽  
David Ternant ◽  
Nathalie Heuzé-Vourc’h ◽  
...  

Respiratorytract infections (RTIs) are frequent and life-threatening diseases, accounting for several millions of deaths worldwide. RTIs implicate microorganisms, including viruses (influenza virus, coronavirus, respiratory syncytial virus (RSV)), bacteria (Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus aureus and Bacillus anthracis) and fungi (Pneumocystis spp., Aspergillus spp. and very occasionally Candida spp.). The emergence of new pathogens, like the coronavirus SARS-CoV-2, and the substantial increase in drug resistance have highlighted the critical necessity to develop novel anti-infective molecules. In this context, antibodies (Abs) are becoming increasingly important in respiratory medicine and may fulfill the unmet medical needs of RTIs. However, development of Abs for treating infectious diseases is less advanced than for cancer and inflammatory diseases. Currently, only three Abs have been marketed for RTIs, namely, against pulmonary anthrax and RSV infection, while several clinical and preclinical studies are in progress. This article gives an overview of the advances in the use of Abs for the treatment of RTIs, based on the analysis of clinical studies in this field. It describes the Ab structure, function and pharmacokinetics, and discusses the opportunities offered by the various Ab formats, Ab engineering and co-treatment strategies. Including the most recent literature, it finally highlights the strengths, weaknesses and likely future trends of a novel anti-RTI Ab armamentarium.


2021 ◽  
Vol 7 (2) ◽  
pp. 124
Author(s):  
Charmaine Retanal ◽  
Brianna Ball ◽  
Jennifer Geddes-McAlister

Post-translational modifications (PTMs) change the structure and function of proteins and regulate a diverse array of biological processes. Fungal pathogens rely on PTMs to modulate protein production and activity during infection, manipulate the host response, and ultimately, promote fungal survival. Given the high mortality rates of fungal infections on a global scale, along with the emergence of antifungal-resistant species, identifying new treatment options is critical. In this review, we focus on the role of PTMs (e.g., phosphorylation, acetylation, ubiquitination, glycosylation, and methylation) among the highly prevalent and medically relevant fungal pathogens, Candida spp., Aspergillus spp., and Cryptococcus spp. We explore the role of PTMs in fungal stress response and host adaptation, the use of PTMs to manipulate host cells and the immune system upon fungal invasion, and the importance of PTMs in conferring antifungal resistance. We also provide a critical view on the current knowledgebase, pose questions key to our understanding of the intricate roles of PTMs within fungal pathogens, and provide research opportunities to uncover new therapeutic strategies.


1987 ◽  
Vol 1 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Guy A. Settipane

Many systemic diseases are associated with nasal symptoms, Rhinitis associated with asthma is probably the most common with leprosy and fungal infections being the rarest. A careful history and nasal examination in a patient with rhinitis may lead to the discovery of more significant systemic diseases. Proper treatment of systemic disease will often cure or improve the associated rhinitis. Similarly, appropriate treatment of the rhinitis/sinusitis may reduce systemic complaints such as asthma. At times, identification of the cause of rhinitis as in CSF rhinorrhea, Wegeners’ syndrome, etc., alerts one to a life-threatening entity. Thus, it is apparent that the nose is an excellent mirror of some systemic diseases and identifying and understanding the differential diagnosis of nasal symptoms may be a tremendous help in diagnosing the disease and treating the whole patient.


Sign in / Sign up

Export Citation Format

Share Document