scholarly journals FimH and Anti-Adhesive Therapeutics: A Disarming Strategy Against Uropathogens

Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 397 ◽  
Author(s):  
Meysam Sarshar ◽  
Payam Behzadi ◽  
Cecilia Ambrosi ◽  
Carlo Zagaglia ◽  
Anna Teresa Palamara ◽  
...  

Chaperone-usher fimbrial adhesins are powerful weapons against the uropathogens that allow the establishment of urinary tract infections (UTIs). As the antibiotic therapeutic strategy has become less effective in the treatment of uropathogen-related UTIs, the anti-adhesive molecules active against fimbrial adhesins, key determinants of urovirulence, are attractive alternatives. The best-characterized bacterial adhesin is FimH, produced by uropathogenic Escherichia coli (UPEC). Hence, a number of high-affinity mono- and polyvalent mannose-based FimH antagonists, characterized by different bioavailabilities, have been reported. Given that antagonist affinities are firmly associated with the functional heterogeneities of different FimH variants, several FimH inhibitors have been developed using ligand-drug discovery strategies to generate high-affinity molecules for successful anti-adhesion therapy. As clinical trials have shown d-mannose’s efficacy in UTIs prevention, it is supposed that mannosides could be a first-in-class strategy not only for UTIs, but also to combat other Gram-negative bacterial infections. Therefore, the current review discusses valuable and effective FimH anti-adhesive molecules active against UTIs, from design and synthesis to in vitro and in vivo evaluations.

2010 ◽  
Vol 53 (24) ◽  
pp. 8627-8641 ◽  
Author(s):  
Tobias Klein ◽  
Daniela Abgottspon ◽  
Matthias Wittwer ◽  
Said Rabbani ◽  
Janno Herold ◽  
...  

Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 739
Author(s):  
Jean-Philippe Lavigne ◽  
Jérémy Ranfaing ◽  
Catherine Dunyach-Rémy ◽  
Albert Sotto

Urinary tract infections (UTIs) are the most common bacterial infections around the world. Uropathogenic Escherichia coli (UPEC) is among the main pathogens isolated in UTIs. The rate of UPEC with high resistance towards antibiotics and multidrug-resistant bacteria have increased dramatically and conduct to the difficulty to treat UTIs. Due to the rarefaction of new antibiotics molecules, new alternative strategies must be evaluated. Since many years, propolis has demonstrated an interesting antibacterial activity against E. coli. Here, we evaluated its activity added to antibiotics on a panel of UPEC with different resistance mechanisms. Minimal inhibitory concentrations (MICs) and time–kill curves of fosfomycin, ceftriaxone, ertapenem and ofloxacin, with and without propolis, were determined. Significant diminution of the MICs was observed using ceftriaxone or ofloxacin + propolis. Propolis alone had a bacteriostatic activity with time-dependent effect against UPEC. The addition of this nutraceutical improved the effect of all the antibiotics evaluated (except fosfomycin) and showed a synergistic bactericidal effect (fractional inhibitory concentrations index ≤ 0.5 and a decrease ≥ 2 log CFU/mL for the combination of propolis plus antibiotics compared with the antibiotic alone). Propolis is able to restore in vitro antibiotic susceptibility when added to antibiotics against UPEC. This study showed that propolis could enhance the efficiency of antibiotics used in UTIs and could represent an alternative solution.


Author(s):  
Hong Li ◽  
Xueqin Jiang ◽  
Xin Shen ◽  
Yueshan Sun ◽  
Nan Jiang ◽  
...  

Thrombocytopenia is closely linked with hemorrhagic diseases, for which induction of thrombopoiesis shows promise as an effective treatment. Polyphenols widely exist in plants and manifest antioxidation and antitumour activities. In this study, we investigated the thrombopoietic effect and mechanism of 3,3′,4′-trimethylellagic acid (TMEA, a polyphenol in Sanguisorba officinalis L.) using in silico prediction and experimental validation. A KEGG analysis indicated that PI3K/Akt signalling functioned as a crucial pathway. Furthermore, the virtual molecular docking results showed high-affinity binding (a docking score of 6.65) between TMEA and mTOR, suggesting that TMEA might target the mTOR protein to modulate signalling activity. After isolation of TMEA, in vitro and in vivo validation revealed that this compound could promote megakaryocyte differentiation/maturation and platelet formation. In addition, it enhanced the phosphorylation of PI3K, Akt, mTOR, and P70S6K and increased the expression of GATA-1 and NF-E2, which confirmed the mechanism prediction. In conclusion, our findings are the first to demonstrate that TMEA may provide a novel therapeutic strategy that relies on the PI3K/Akt/mTOR pathway to facilitate megakaryocyte differentiation and platelet production.


1993 ◽  
Vol 16 (11) ◽  
pp. 765-770 ◽  
Author(s):  
J.W. Costerton ◽  
A.E. Khoury ◽  
K.H. Ward ◽  
H. Anwar

Direct examination of medical devices that have been foci of chronic device-related bacterial infections has shown that the causative organisms grow predominantly in slime-enclosed biofilms. These adherent biofilms are inherently resistant to host defences (antibodies, phagocytes) and to conventional antibiotic therapy. Device-related infections can be prevented by careful cleaning and sterilization of the device, and by the avoidance of any manipulations that would allow the formation of even the most rudimentary biofilm prior to implantation. Once a device-related infection has become established, both the Minimum Inhibitory Concentration (MIC) and the Biofilm Eliminating Concentration (BEC) of the causative organism must be determined and therapeutic strategy must aim at the use of the MIC to control the acute phase caused by planktonic bacteria and of the BEC to eliminate the biofilm nidus of infection. The removal of the colonized device should be considered early in the course of treatment if the BEC cannot be delivered to the colonized device. We describe a new bioelectric technology presently in the in vitro stage of development which, if it can be reproduced in vivo, will be very effective in the prevention and control of device-related bacterial infections.


2021 ◽  
Author(s):  
Jacob J. Zulk ◽  
Justin R. Clark ◽  
Samantha Ottinger ◽  
Mallory B. Ballard ◽  
Marlyd E. Mejia ◽  
...  

ABSTRACTUrinary tract infections (UTIs) are among the most common infections treated worldwide each year and are primarily caused by uropathogenic E. coli (UPEC). Rising rates of antibiotic resistance among uropathogens have spurred consideration of alternative strategies such as bacteriophage (phage) therapy; however, phage-bacterial interactions within the urinary environment are poorly defined. Here, we assess the activity of two phages, HP3 and ES17, against clinical UPEC isolates using in vitro and in vivo models of UTI. In both bacteriologic medium and pooled human urine, we identified phage resistance arising within the first 6-8 hours of coincubation. Whole genome sequencing revealed that UPEC resistant to HP3 and ES17 harbored mutations in genes involved in lipopolysaccharide (LPS) biosynthesis. These mutations coincided with several in vitro phenotypes, including alterations to adherence to and invasion of human bladder epithelial HTB-9 cells, and increased biofilm formation. Interestingly, these phage-resistant UPEC demonstrated reduced growth in pooled human urine, which could be partially rescued by nutrient supplementation, and were more sensitive to several outer membrane targeting antibiotics than parental strains. Additionally, these phage-resistant UPEC were attenuated in a murine UTI model. In total, our findings suggest that while resistance to phages, such as LPS-targeted HP3 and ES17, may readily arise in the urinary environment, phage resistance is accompanied by fitness costs rendering UPEC more susceptible to host immunity or antibiotics.IMPORTANCEUTIs are one of the most common causes of outpatient antibiotic use, and rising antibiotic resistance threatens the ability to control these infections unless alternative treatments are developed. Bacteriophage (phage) therapy is gaining renewed interest, however, much like antibiotics, bacteria can readily become resistant to phage. For successful UTI treatment, we must predict how bacteria will evade killing by phage and identify the downstream consequences of phage-resistant bacterial infections. In our current study, we found that while phage-resistant mutant bacteria quickly emerged, these mutations left bacteria less capable of growing in human urine and colonizing the murine bladder. These results suggest that phage therapy poses a viable UTI treatment if phage resistance confers fitness costs for the uropathogen. These results have implications for developing cocktails of phage with multiple different bacterial targets, each of which is only evaded at the cost of bacterial fitness.


2015 ◽  
Vol 89 (15) ◽  
pp. 7449-7456 ◽  
Author(s):  
Diana P. Pires ◽  
Diana Vilas Boas ◽  
Sanna Sillankorva ◽  
Joana Azeredo

Antimicrobial resistance constitutes one of the major worldwide public health concerns. Bacteria are becoming resistant to the vast majority of antibiotics, and nowadays, a common infection can be fatal. To address this situation, the use of phages for the treatment of bacterial infections has been extensively studied as an alternative therapeutic strategy. SincePseudomonas aeruginosais one of the most common causes of health care-associated infections, many studies have reported thein vitroandin vivoantibacterial efficacy of phage therapy against this bacterium. This review collects data of all theP. aeruginosaphages sequenced to date, providing a better understanding about their biodiversity. This review further addresses thein vitroandin vivoresults obtained by using phages to treat or preventP. aeruginosainfections as well as the major hurdles associated with this therapy.


1982 ◽  
Vol 47 (03) ◽  
pp. 244-248 ◽  
Author(s):  
D P Thomas ◽  
Rosemary E Merton ◽  
T W Barrowcliffe ◽  
L Thunberg ◽  
U Lindahl

SummaryThe in vitro and in vivo characteristics of two oligosaccharide heparin fragments have been compared to those of unfractionated mucosal heparin. A decasaccharide fragment had essentially no activity by APTT or calcium thrombin time assays in vitro, but possessed very high specific activity by anti-Factor Xa assays. When injected into rabbits at doses of up to 80 ¼g/kg, this fragment was relatively ineffective in impairing stasis thrombosis despite producing high blood levels by anti-Xa assays. A 16-18 monosaccharide fragment had even higher specific activity (almost 2000 iu/mg) by chromogenic substrate anti-Xa assay, with minimal activity by APTT. When injected in vivo, this fragment gave low blood levels by APTT, very high anti-Xa levels, and was more effective in preventing thrombosis than the decasaccharide fragment. However, in comparison with unfractionated heparin, the 16-18 monosaccharide fragment was only partially effective in preventing thrombosis, despite producing much higher blood levels by anti-Xa assays.It is concluded that the high-affinity binding of a heparin fragment to antithrombin III does not by itself impair venous thrombogenesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential.


2020 ◽  
Author(s):  
Hacer Kuzu Okur ◽  
Koray Yalcin ◽  
Cihan Tastan ◽  
Sevda Demir ◽  
Bulut Yurtsever ◽  
...  

UNSTRUCTURED Dornase alfa, the recombinant form of the human DNase I enzyme, breaks down neutrophil extracellular traps (NET) that include a vast amount of DNA fragments, histones, microbicidal proteins and oxidant enzymes released from necrotic neutrophils in the highly viscous mucus of cystic fibrosis patients. Dornase alfa has been used for decades in patients with cystic fibrosis to reduce the viscoelasticity of respiratory tract secretions, to decrease the severity of respiratory tract infections, and to improve lung function. Previous studies have linked abnormal NET formations to lung diseases, especially to acute respiratory distress syndrome (ARDS). Coronavirus disease 2019 (COVID-19) pandemic affected more than two million people over the world, resulting in unprecedented health, social and economic crises. The COVID-19, viral pneumonia that progresses to ARDS and even multiple organ failure, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). High blood neutrophil levels are an early indicator of SARS-CoV-2 infection and predict severe respiratory diseases. A similar mucus structure is detected in COVID-19 patients due to the accumulation of excessive NET in the lungs. Here, we show our preliminary results with dornase alfa that may have an in-vitro anti-viral effect against SARS-CoV-2 infection in a bovine kidney cell line, MDBK without drug toxicity on healthy adult peripheral blood mononuclear cells. In this preliminary study, we also showed that dornase alfa can promote clearance of NET formation in both an in-vitro and three COVID-19 cases who showed clinical improvement in radiological analysis (2-of-3 cases), oxygen saturation (SpO2), respiratory rate, disappearing of dyspnea and coughing.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Xin She ◽  
Qing Yang Yu ◽  
Xiao Xiao Tang

AbstractInterleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.


Sign in / Sign up

Export Citation Format

Share Document