scholarly journals Microbiota-Mitochondria Inter-Talk: A Potential Therapeutic Strategy in Obesity and Type 2 Diabetes

Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 848
Author(s):  
Teresa Vezza ◽  
Zaida Abad-Jiménez ◽  
Miguel Marti-Cabrera ◽  
Milagros Rocha ◽  
Víctor Manuel Víctor

The rising prevalence of obesity and type 2 diabetes (T2D) is a growing concern worldwide. New discoveries in the field of metagenomics and clinical research have revealed that the gut microbiota plays a key role in these metabolic disorders. The mechanisms regulating microbiota composition are multifactorial and include resistance to stress, presence of pathogens, diet, cultural habits and general health conditions. Recent evidence has shed light on the influence of microbiota quality and diversity on mitochondrial functions. Of note, the gut microbiota has been shown to regulate crucial transcription factors, coactivators, as well as enzymes implicated in mitochondrial biogenesis and metabolism. Moreover, microbiota metabolites seem to interfere with mitochondrial oxidative/nitrosative stress and autophagosome formation, thus regulating the activation of the inflammasome and the production of inflammatory cytokines, key players in chronic metabolic disorders. This review focuses on the association between intestinal microbiota and mitochondrial function and examines the mechanisms that may be the key to their use as potential therapeutic strategies in obesity and T2D management.

2018 ◽  
Vol 9 (7) ◽  
pp. 3732-3742 ◽  
Author(s):  
Chun Chen ◽  
Li-Jun You ◽  
Qiang Huang ◽  
Xiong Fu ◽  
Bin Zhang ◽  
...  

Increasing evidence indicates that gut microbiota is an important factor in mediating the development of metabolic disorders, especially type 2 diabetes.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2749 ◽  
Author(s):  
Miguel A. Ortega ◽  
Oscar Fraile-Martínez ◽  
Irene Naya ◽  
Natalio García-Honduvilla ◽  
Melchor Álvarez-Mon ◽  
...  

Obesity is a condition of rising prevalence worldwide, with important socioeconomic implications, being considered as a growing public health concern. Frequently, obesity brings other complications in addition to itself—like Type 2 Diabetes Mellitus (T2DM)—sharing origin, risk factors and pathophysiological mechanisms. In this context, some authors have decided to include both conditions as a unique entity known as “diabesity”. In fact, understanding diabesity as a single disease is possible to maximise the benefits from therapies received in these patients. Gut microbiota plays a key role in individual’s health, and their alterations, either in its composition or derived products are related to a wide range of metabolic disorders like T2DM and obesity. The present work aims to collect the different changes reported in gut microbiota in patients with T2DM associated with obesity and their possible role in the onset, development, and establishment of the disease. Moreover, current research lines to modulate gut microbiota and the potential clinical translation derived from the knowledge of this system will also be reviewed, which may provide support for a better clinical management of such a complex condition.


2020 ◽  
Vol 92 (10) ◽  
pp. 97-104
Author(s):  
T. Y. Demidova ◽  
K. G. Lobanova ◽  
O. S. Oinotkinova

Gut microbiota (GM) is a set of bacteria which colonize the gastrointestinal tract. GM and its active metabolites take part in intestinal and hepatic gluconeogenesis, in the synthesis of incretin hormones, and affect the regulation of appetite. Thus, GM and its metabolites participate in the homeostasis of carbohydrates and fats. An imbalance in the set of the intestinal flora and a disturbance of the production of active metabolites sharply increases the risk of developing obesity and type 2 diabetes. There are conflicting data in the literature on the role of specific microorganisms in the development of metabolic disorders. Research is needed to identify specific types of bacteria and their active metabolites which affect the development of obesity and type 2 diabetes.


Author(s):  
L. A. Kharitonova ◽  
O. V. Papisheva ◽  
T. A. Mayatskaya ◽  
G. A. Kotaysh

The gut microbiota has attracted increasing attention during the last several years as a key player in the pathophysiology of chronic disease. Microbiome is considered to be the link between metabolic disorders, obesity, insulin resistance, dyslipidemia, diabetes, hypertension and cardiovascular diseases. Recent findings have related the intestinal microbiota to a plethora of pathological conditions, including type 2 diabetes, obesity, cholelithiasis and nonalcoholic steatohepatitis. This review presents potential mechanisms for the development of these diseases in response to changes in the gut microbiota. They involve increased gut permeability, low-grade inflammation and autoantibodies. Many studies contradict each other, which confirms the need for further scientific research in this area.


2021 ◽  
Vol 22 (7) ◽  
pp. 3566
Author(s):  
Chae Bin Lee ◽  
Soon Uk Chae ◽  
Seong Jun Jo ◽  
Ui Min Jerng ◽  
Soo Kyung Bae

Metformin is the first-line pharmacotherapy for treating type 2 diabetes mellitus (T2DM); however, its mechanism of modulating glucose metabolism is elusive. Recent advances have identified the gut as a potential target of metformin. As patients with metabolic disorders exhibit dysbiosis, the gut microbiome has garnered interest as a potential target for metabolic disease. Henceforth, studies have focused on unraveling the relationship of metabolic disorders with the human gut microbiome. According to various metagenome studies, gut dysbiosis is evident in T2DM patients. Besides this, alterations in the gut microbiome were also observed in the metformin-treated T2DM patients compared to the non-treated T2DM patients. Thus, several studies on rodents have suggested potential mechanisms interacting with the gut microbiome, including regulation of glucose metabolism, an increase in short-chain fatty acids, strengthening intestinal permeability against lipopolysaccharides, modulating the immune response, and interaction with bile acids. Furthermore, human studies have demonstrated evidence substantiating the hypotheses based on rodent studies. This review discusses the current knowledge of how metformin modulates T2DM with respect to the gut microbiome and discusses the prospect of harnessing this mechanism in treating T2DM.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2131
Author(s):  
Shujuan Zheng ◽  
Yanan Wang ◽  
Jingjing Fang ◽  
Ruixuan Geng ◽  
Mengjie Li ◽  
...  

Previous studies have reported the therapeutic effects of oleuropein (OP) consumption on the early stage of type 2 diabetes. However, the efficacy of OP on the advanced stage of type 2 diabetes has not been investigated, and the relationship between OP and intestinal flora has not been studied. Therefore, in this study, to explore the relieving effects of OP intake on the advanced stage of type 2 diabetes and the regulatory effects of OP on intestinal microbes, diabetic db/db mice (17-week-old) were treated with OP at the dose of 200 mg/kg for 15 weeks. We found that OP has a significant effect in decreasing fasting blood glucose levels, improving glucose tolerance, lowering the homeostasis model assessment–insulin resistance index, restoring histopathological features of tissues, and promoting hepatic protein kinase B activation in db/db mice. Notably, OP modulates gut microbiota at phylum level, increases the relative abundance of Verrucomicrobia and Deferribacteres, and decreases the relative abundance of Bacteroidetes. OP treatment increases the relative abundance of Akkermansia, as well as decreases the relative abundance of Prevotella, Odoribacter, Ruminococcus, and Parabacteroides at genus level. In conclusion, OP may ameliorate the advanced stage of type 2 diabetes through modulating the composition and function of gut microbiota. Our findings provide a promising therapeutic approach for the treatment of advanced stage type 2 diabetes.


2021 ◽  
Vol 22 (2) ◽  
pp. 803
Author(s):  
Giuseppina Emanuela Grieco ◽  
Noemi Brusco ◽  
Giada Licata ◽  
Daniela Fignani ◽  
Caterina Formichi ◽  
...  

Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia mainly due to pancreatic β cell death and/or dysfunction, caused by several types of stress such as glucotoxicity, lipotoxicity and inflammation. Different patho-physiological mechanisms driving β cell response to these stresses are tightly regulated by microRNAs (miRNAs), a class of negative regulators of gene expression, involved in pathogenic mechanisms occurring in diabetes and in its complications. In this review, we aim to shed light on the most important miRNAs regulating the maintenance and the robustness of β cell identity, as well as on those miRNAs involved in the pathogenesis of the two main forms of diabetes mellitus, i.e., type 1 and type 2 diabetes. Additionally, we acknowledge that the understanding of miRNAs-regulated molecular mechanisms is fundamental in order to develop specific and effective strategies based on miRNAs as therapeutic targets, employing innovative molecules.


Author(s):  
Dominic Salamone ◽  
Angela Albarosa Rivellese ◽  
Claudia Vetrani

AbstractGut microbiota and its metabolites have been shown to influence multiple physiological mechanisms related to human health. Among microbial metabolites, short-chain fatty acids (SCFA) are modulators of different metabolic pathways. On the other hand, several studies suggested that diet might influence gut microbiota composition and activity thus modulating the risk of metabolic disease, i.e. obesity, insulin resistance and type 2 diabetes. Among dietary component, dietary fibre may play a pivotal role by virtue of its prebiotic effect on fibre-fermenting bacteria, that may increase SCFA production. The aim of this review was to summarize and discuss current knowledge on the impact of dietary fibre as modulator of the relationship between glucose metabolism and microbiota composition in humans. More specifically, we analysed evidence from observational studies and randomized nutritional intervention investigating the relationship between gut microbiota, short-chain fatty acids and glucose metabolism. The possible mechanisms behind this association were also discussed.


2021 ◽  
Vol 22 (11) ◽  
pp. 6142
Author(s):  
Michael Ezrokhi ◽  
Yahong Zhang ◽  
Shuqin Luo ◽  
Anthony H. Cincotta

The treatment of type 2 diabetes patients with bromocriptine-QR, a unique, quick release micronized formulation of bromocriptine, improves glycemic control and reduces adverse cardiovascular events. While the improvement of glycemic control is largely the result of improved postprandial hepatic glucose metabolism and insulin action, the mechanisms underlying the drug’s cardioprotective effects are less well defined. Bromocriptine is a sympatholytic dopamine agonist and reduces the elevated sympathetic tone, characteristic of metabolic syndrome and type 2 diabetes, which potentiates elevations of vascular oxidative/nitrosative stress, known to precipitate cardiovascular disease. Therefore, this study investigated the impact of bromocriptine treatment upon biomarkers of vascular oxidative/nitrosative stress (including the pro-oxidative/nitrosative stress enzymes of NADPH oxidase 4, inducible nitric oxide (iNOS), uncoupled endothelial nitric oxide synthase (eNOS), the pro-inflammatory/pro-oxidative marker GTP cyclohydrolase 1 (GTPCH 1), and the pro-vascular health enzyme, soluble guanylate cyclase (sGC) as well as the plasma level of thiobarbituric acid reactive substances (TBARS), a circulating marker of systemic oxidative stress), in hypertensive SHR rats held on a high fat diet to induce metabolic syndrome. Inasmuch as the central nervous system (CNS) dopaminergic activities both regulate and are regulated by CNS circadian pacemaker circuitry, this study also investigated the time-of-day-dependent effects of bromocriptine treatment (10 mg/kg/day at either 13 or 19 h after the onset of light (at the natural waking time or late during the activity period, respectively) among animals held on 14 h daily photoperiods for 16 days upon such vascular biomarkers of vascular redox state, several metabolic syndrome parameters, and mediobasal hypothalamic (MBH) mRNA expression levels of neuropeptides neuropeptide Y (NPY) and agouti-related protein (AgRP) which regulate the peripheral fuel metabolism and of mRNA expression of other MBH glial and neuronal cell genes that support such metabolism regulating neurons in this model system. Such bromocriptine treatment at ZT 13 improved (reduced) biomarkers of vascular oxidative/nitrosative stress including plasma TBARS level, aortic NADPH oxidase 4, iNOS and GTPCH 1 levels, and improved other markers of coupled eNOS function, including increased sGC protein level, relative to controls. However, bromocriptine treatment at ZT 19 produced no improvement in either coupled eNOS function or sGC protein level. Moreover, such ZT 13 bromocriptine treatment reduced several metabolic syndrome parameters including fasting insulin and leptin levels, as well as elevated systolic and diastolic blood pressure, insulin resistance, body fat store levels and liver fat content, however, such effects of ZT 19 bromocriptine treatment were largely absent versus control. Finally, ZT 13 bromocriptine treatment reduced MBH NPY and AgRP mRNA levels and mRNA levels of several MBH glial cell/neuronal genes that code for neuronal support/plasticity proteins (suggesting a shift in neuronal structure/function to a new metabolic control state) while ZT 19 treatment reduced only AgRP, not NPY, and was with very little effect on such MBH glial cell genes expression. These findings indicate that circadian-timed bromocriptine administration at the natural circadian peak of CNS dopaminergic activity (that is diminished in insulin resistant states), but not outside this daily time window when such CNS dopaminergic activity is naturally low, produces widespread improvements in biomarkers of vascular oxidative stress that are associated with the amelioration of metabolic syndrome and reductions in MBH neuropeptides and gene expressions known to facilitate metabolic syndrome. These results of such circadian-timed bromocriptine treatment upon vascular pathology provide potential mechanisms for the observed marked reductions in adverse cardiovascular events with circadian-timed bromocriptine-QR therapy (similarly timed to the onset of daily waking as in this study) of type 2 diabetes subjects and warrant further investigations into related mechanisms and the potential application of such intervention to prediabetes and metabolic syndrome patients as well.


Sign in / Sign up

Export Citation Format

Share Document