scholarly journals The Influence of Laser Sintering Modes on the Conductivity and Microstructure of Silver Nanoparticle Arrays Formed by Dry Aerosol Printing

2019 ◽  
Vol 10 (1) ◽  
pp. 246 ◽  
Author(s):  
Kirill Khabarov ◽  
Denis Kornyushin ◽  
Bulat Masnaviev ◽  
Dmitry Tuzhilin ◽  
Dmitry Saprykin ◽  
...  

The demand for the development of local laser sintering of nanoparticle arrays is explained by the expanding needs for printed electronics for functional microstructure formation, on heat-sensitive substrates in particular. This work is based on the research into the sintering of arrays of silver nanoparticles synthesized in a spark discharge and deposited on a substrate by focused aerosol flow. The sintering was done by continuous and pulsed lasers with wavelengths 527, 980 and 1054 nm. Sintered samples were studied by measuring the resistivity, cross-section profile area and microstructure features. The highest average conductivity, equal to the half of the bulk silver conductivity, was achieved when sintering by continuous radiation with a wavelength 980 nm. The results showed that when using pulsed radiation the direct heating of nanoparticles in the sample surface layer dominates with the formation of a pore-free conductive layer of around 0.5 μm thick and crystallite of 70–80 nm size. It was found that laser sintering by radiation with a wavelength 527 nm required an order of magnitude lower specific energy costs as compared to the longwave laser radiation. The high energy efficiency of laser sintering is explained by special conditions for radiation absorption at plasmon resonance.

2020 ◽  
Vol 834 ◽  
pp. 37-41 ◽  
Author(s):  
Pavel V. Arsenov ◽  
Alexey A. Efimov ◽  
Kirill M. Khabarov ◽  
Denis V. Kornyushin ◽  
Victor V. Ivanov

This article presents a comparison of laser sintering of deposited nanoparticles obtained by two methods of aerosol jet printing. The first printing method was based on the use of silver nanoparticles in the form of microdroplets contained in nanoink. In the second method, dry nanoparticles were obtained as a result of gas-discharge synthesis without the use of solvents. The nanoparticles in both experiments were deposited on a glass substrate in the form of a line with a width of about 50 ± 5 μm and a height of about 1.0 ± 0.2 μm. Then, the obtained lines were sintered using laser radiation with a wavelength of 1064 nm. As a result of experiments on the deposition and sintering, it was found that the electrical resistivity of the lines of sintered nanoparticles in the form of nanoink and dry nanoparticles obtained in a gas discharge was 8.1 and 4.9 μΩ·cm, respectively. Thus, it has been demonstrated that laser sintering of nanoparticles obtained in a gas discharge makes it possible to achieve a lower specific resistance of lines than the method of aerosol printing using nanoink. In addition, the electrical resistivity of the lines of sintered nanoparticles obtained in a gas discharge is 3 times greater than the electrical resistivity of bulk silver, which is a sufficient result for the creation of conductive elements of printed electronics.


Author(s):  
A.J. Tousimis

An integral and of prime importance of any microtopography and microanalysis instrument system is its electron, x-ray and ion detector(s). The resolution and sensitivity of the electron microscope (TEM, SEM, STEM) and microanalyzers (SIMS and electron probe x-ray microanalyzers) are closely related to those of the sensing and recording devices incorporated with them.Table I lists characteristic sensitivities, minimum surface area and depth analyzed by various methods. Smaller ion, electron and x-ray beam diameters than those listed, are possible with currently available electromagnetic or electrostatic columns. Therefore, improvements in sensitivity and spatial/depth resolution of microanalysis will follow that of the detectors. In most of these methods, the sample surface is subjected to a stationary, line or raster scanning photon, electron or ion beam. The resultant radiation: photons (low energy) or high energy (x-rays), electrons and ions are detected and analyzed.


Author(s):  
Natsuko Asano ◽  
Shunsuke Asahina ◽  
Natasha Erdman

Abstract Voltage contrast (VC) observation using a scanning electron microscope (SEM) or a focused ion beam (FIB) is a common failure analysis technique for semiconductor devices.[1] The VC information allows understanding of failure localization issues. In general, VC images are acquired using secondary electrons (SEs) from a sample surface at an acceleration voltage of 0.8–2.0 kV in SEM. In this study, we aimed to find an optimized electron energy range for VC acquisition using Auger electron spectroscopy (AES) for quantitative understanding.


2006 ◽  
Vol 21 (13) ◽  
pp. 1029-1040 ◽  
Author(s):  
A. C. HAYES ◽  
GERARD JUNGMAN ◽  
J. C. SOLEM ◽  
P. A. BRADLEY ◽  
R. S. RUNDBERG

The National Ignition Facility (NIF) technology is designed to drive deuterium–tritium (DT) internal confinement fusion (ICF) targets to ignition using indirect radiation from laser beam energy captured in a hohlraum. Hydrodynamical instabilities at interfaces in the ICF capsule leading to mix between the DT fuel and the ablator shell material are of fundamental physical interest and can affect the performance characteristics of the capsule. Here we describe new radiochemical diagnostics for mix processes in ICF capsules with plastic or Be (0.9% Cu ) ablator shells. Reactions of high-energy tritons with shell material produce high-energy β-emitters. We show that mix between the DT fuel and the shell material enhances high-energy prompt beta emission from these reactions by more than an order of magnitude over that expected in the absence of mix. We further show how a mix signal could be detectable in an ignition failure regime corresponding to yields greater than about 2 kJ.


2018 ◽  
Vol 24 (5) ◽  
pp. 813-820 ◽  
Author(s):  
Junjie Wu ◽  
Xiang Xu ◽  
Zhihao Zhao ◽  
Minjie Wang ◽  
Jie Zhang

Purpose The purpose of this paper is to investigate the effect of selective laser sintering (SLS) method on morphology and performance of polyamide 12. Design/methodology/approach Crystallization behavior is critical to the properties of semi-crystalline polymers. The crystallization condition of SLS process is much different from others. The morphology of polyamide 12 produced by SLS technology was investigated using scanning electron microscopy, polarized light microscopy, differential scanning calorimetry, X-ray diffraction and wide-angle X-ray diffraction. Findings Too low fill laser power brought about bad fusion of powders, while too high energy input resulted in bad performance due to chain scission of macromolecules. There were three types of crystal in the raw powder material, denoted as overgrowth crystal, ring-banded spherulite and normal spherulite. Originality/value In this work, SLS samples with different sintering parameters, as well as compression molding sample for the purpose of comparison, were made to study the morphology and crystal structure of sintered PA12 in detail.


2010 ◽  
Vol 654-656 ◽  
pp. 1122-1125
Author(s):  
Rajeev K. Gupta ◽  
B.V. Mahesh ◽  
R.K. Singh Raman ◽  
Carl C. Koch

Nanocrystalline and microcrystalline Fe-10Cr alloys were prepared by high energy ball milling followed by compaction and sintering, and then oxidized in air for 52 hours at 400°C. The oxidation resistance of nanocrystalline Fe-10Cr alloy as determined by measuring the weight gain after regular time intervals was compared with that of the microcrystalline alloy of same chemical composition (also prepared by the same processing route and oxidized under identical conditions). Oxidation resistance of nanocrystalline Fe10Cr alloy was found to be in excess of an order of magnitude superior than that of microcrystalline Fe10Cr alloy. The paper also presents results of secondary ion mass spectrometry of oxidized samples of nanocrystalline and microcrystalline Fe-Cr alloys, evidencing the formation of a more protective oxide scale in the nanocrystalline alloy.


2021 ◽  
Author(s):  
Tran Nguyet Ngo ◽  
Lee Thomas ◽  
Kavitha Raghavendra ◽  
Terry Wood

Abstract Transporting large volumes of gas over long distances from further and deeper waters remains a significant challenge in making remote offshore gas field developments technologically and economically viable. The conventional development options include subsea compression, floating topside with topside compression and pipeline tie-back to shore, or floating liquefied natural gas vessels. However, these options are CAPEX and OPEX intensive and require high energy consumption. Demand for a lower emission solution is increasingly seen as the growing trend of global energy transition. Pseudo Dry Gas (PDG) technology is being developed by Intecsea, Worley Group and The Oil & Gas Technology Centre (Aberdeen) and tested in collaboration with Cranfield University. This is applied to develop stranded or remote gas reserves by removing fluids at the earliest point of accumulation at multiple locations, resulting in near dry gas performance. This technology aims to solve liquid management issues and subsequently allows for energy efficient transportation of the subsea gas enabling dramatic reductions in emissions. The PDG prototype tested using the Flow Loop facilities at Cranfield University has demonstrated the concept’s feasibility. Due to a greater amount of gas recovered with a much lower power requirement, the CO2 emissions per ton of gas produced via the PDG concept is by an order of magnitude lower than conventional methods. This study showed a reduction of 65% to 80% against standard and alternative near future development options. The paper considers innovative technology and a value proposition for the Pseudo Dry Gas concept based on a benchmarked study of a remote offshore gas field. The basin was located in 2000m of water depth, with a 200km long subsea tie-back. To date the longest tieback studied was 350km. It focused on energy consumption and carbon emission aspects. The conclusion is that decarbonisation of energy consumption is technically possible and can be deployed subsea to help meet this future challenge and push the envelope of subsea gas tie-backs.


2009 ◽  
Vol 42 (3) ◽  
pp. 392-400 ◽  
Author(s):  
I. B. Ramsteiner ◽  
A. Schöps ◽  
H. Reichert ◽  
H. Dosch ◽  
V. Honkimäki ◽  
...  

Diffuse X-ray scattering has been an important tool for understanding the atomic structure of binary systems for more than 50 years. The majority of studies have used laboratory-based sources providing 8 keV photons or synchrotron radiation with similar energies. Diffuse scattering is weak, with the scattering volume determined by the X-ray absorption length. In the case of 8 keV photons, this is not significantly different from the typical extinction length for Bragg scattering. If, however, one goes to energies of the order of 100 keV the scattering volume for the diffuse scattering increases up to three orders of magnitude while the extinction length increases by only one order of magnitude. This leads to a gain of two orders of magnitude in the relative intensity of the diffuse scattering compared with the Bragg peaks. This gain, combined with the possibility of recording the intensity from an entire plane in reciprocal space using a two-dimensional X-ray detector, permits time-resolved diffuse scattering studies in many systems. On the other hand, diffraction features that are usually neglected, such as multiple scattering, come into play. Four types of multiple scattering phenomena are discussed, and the manner in which they appear in high-energy diffraction experiments is considered.


1992 ◽  
Vol 36 ◽  
pp. 653-661 ◽  
Author(s):  
G. S. Knapp ◽  
M. A. Beno ◽  
G. Jennings ◽  
M. Engbretson ◽  
M. Ramanathan

AbstractWe have developed a new type of powder diffractometer. The diffractometer has the potential of both high count rates and very high resolution when used at a synchrotron source. The laboratory based instrument can achieve an order of magnitude improvement in count rate over existing methods with proper optics. The method uses a focusing diffracted beam monochromator in combination with a multichannel detector. The incident x-rays fall on a flat plate or capillary sample and are intercepted by a bent focusing monochromator which has the focus of the bend at the sample surface. The powder diffraction lines emerging from the bent crystal monochromator are detected by a linear or 2-dimensional detector. This allows us to eliminate the background from fluorescence or other scattering and to take data over a range of 3° to 4° instead of one angle at a time thereby providing a large improvement over conventional diffractometers.


1969 ◽  
Vol 24 (12) ◽  
pp. 1633-1640 ◽  
Author(s):  
F. Stähler ◽  
F. Zywietz ◽  
W. Ewert ◽  
H. A. Künkel

The Relative Biological Efficiency (RBE) of 6-GeV-bremsstrahlung on 3-days-old seedlings of Vicia faba was investigated with the Deutsches ElektronenSynchrotron. Dosimetry was carried out by means of the butanol-sensitized FeII/FeIII-reaction. In a Lucite-phantom we observed an increase of the RBE from 0,65 at the surface to values of about 2 at a depth of 40 cm. As changes of that order of magnitude are doubtless beyond the limits of the maximum experimental error we suppose that production of heavy particles by nuclear reactions such as (γ, n) or (γ, p) in deeper layers of matter might cause an increase of the linear energy transfer of the beam.


Sign in / Sign up

Export Citation Format

Share Document