scholarly journals The Combination of Plasma-Processed Air (PPA) and Plasma-Treated Water (PTW) Causes Synergistic Inactivation of Candida albicans SC5314

2020 ◽  
Vol 10 (9) ◽  
pp. 3303 ◽  
Author(s):  
Uta Schnabel ◽  
Kateryna Yarova ◽  
Björn Zessin ◽  
Jörg Stachowiak ◽  
Jörg Ehlbeck

Microwave-induced plasma was used for the generation of plasma-processed air (PPA) and plasma-treated water (PTW). By this way, the plasma was able to functionalize the compressed air and the used water to antimicrobial effective agents. Their fungicidal effects by single and combined application were investigated on Candida albicans strain SC5314. The monoculture of C. albicans was cultivated on specimens with polymeric surface structures (PE-stripes). The additive as well as the synergistic fungicidal potential of PPA and PTW was investigated by different process windows of plasma exposure time (5–50 s) and sample treatment time with PPA/PTW (1–5 min). For a single PTW or PPA treatment, an increase in the reduction factor with the indicated treatment time was observed (maximum reduction factor of 1.1 and 1.6, respectively). In comparison, the combined application of PTW and then PPA resulted in antagonistic, additive and synergistic effects, depending on the combination. An application of the synergistically acting processes of PTW for cleaning and PPA for drying can be an innovative alternative to the sanitary processes currently used in production plants.

Foods ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 55 ◽  
Author(s):  
Uta Schnabel ◽  
Oliver Handorf ◽  
Kateryna Yarova ◽  
Björn Zessin ◽  
Susann Zechlin ◽  
...  

The synergistic antimicrobial effects of plasma-processed air (PPA) and plasma-treated water (PTW), which are indirectly generated by a microwave-induced non-atmospheric pressure plasma, were investigated with the aid of proliferation assays. For this purpose, microorganisms (Listeria monocytogenes, Escherichia coli, Pectobacterium carotovorum, sporulated Bacillus atrophaeus) were cultivated as monocultures on specimens with polymeric surface structures. Both the distinct and synergistic antimicrobial potential of PPA and PTW were governed by the plasma-on time (5–50 s) and the treatment time of the specimens with PPA/PTW (1–5 min). In single PTW treatment of the bacteria, an elevation of the reduction factor with increasing treatment time could be observed (e.g., reduction factor of 2.4 to 3.0 for P. carotovorum). In comparison, the combination of PTW and subsequent PPA treatment leads to synergistic effects that are clearly not induced by longer treatment times. These findings have been valid for all bacteria (L. monocytogenes > P. carotovorum = E. coli). Controversially, the effect is reversed for endospores of B. atrophaeus. With pure PPA treatment, a strong inactivation at 50 s plasma-on time is detectable, whereas single PTW treatment shows no effect even with increasing treatment parameters. The use of synergistic effects of PTW for cleaning and PPA for drying shows a clear alternative for currently used sanitation methods in production plants. Highlights: Non-thermal atmospheric pressure microwave plasma source used indirect in two different modes—gaseous and liquid; Measurement of short and long-living nitrite and nitrate in corrosive gas PPA (plasma-processed air) and complex liquid PTW (plasma-treated water); Application of PTW and PPA in single and combined use for biological decontamination of different microorganisms.


Author(s):  
Oliver Handorf ◽  
Viktoria Isabella Pauker ◽  
Uta Schnabel ◽  
Thomas Weihe ◽  
Eric Freund ◽  
...  

For the decontamination of surfaces in the food production industry, plasma generated compounds (PGCs) such as plasma-treated water (PTW) or plasma processed air (PPA) offer many promising possibilities for future applications. Therefore, the antimicrobial effect of water treated with microwave-induced plasma (MidiPLexc) on Pseudomonas fluorescens biofilms was investigated. 10 ml deionized water was treated with the MidiPLexc plasma source for 100 s, 300 s and 900 s (pre-treatment time) and the bacterial biofilms were exposed to the PTW for 1 min, 3 min and 5 min (post treatment time). To investigate the influence of PTW on P. fluorescens biofilms, microbiological assays (CFU, fluorescence and XTT assay) and imaging techniques (fluorescence microscopy, confocal laser scanning microscopy (CLSM), and atomic force microscopy (AFM)) were used. The CFU showed a maximum reduction of 6 log10 by using 300 s pre-treated PTW for 5 min. Additionally, a maximum reduction of 81 % for the viability of the cells and a 92 % reduction in the metabolic activity of the cells was achieved by using 900 s pre-treated PTW for 5 min. The microscopic images showed evident microbial inactivation within the biofilm even at the shortest pre treatment (100 s) and post-treatment (1 min) times. Moreover, reduction of the biofilm thickness and increased cluster formation within the biofilm was detected. Morphologically, the fusion of cell walls into a uniform dense cell mass. The findings correlated with a decrease in the pH value of the PTW, which forms the basis for the chemically active components of PTW and its antimicrobial effects. These results, provide valuable insights into the mechanisms of inactivation of biofilms by plasma generated compounds (PGCs) such as PTW and thus allow for further parameter adjustment for applications in food industry.


2021 ◽  
Vol 22 (5) ◽  
pp. 2771
Author(s):  
Anna Richter ◽  
Elisabeth Fischer ◽  
Clemens Holz ◽  
Julia Schulze ◽  
Sandra Lange ◽  
...  

Aberrant PI3K/AKT signaling is a hallmark of acute B-lymphoblastic leukemia (B-ALL) resulting in increased tumor cell proliferation and apoptosis deficiency. While previous AKT inhibitors struggled with selectivity, MK-2206 promises meticulous pan-AKT targeting with proven anti-tumor activity. We herein, characterize the effect of MK-2206 on B-ALL cell lines and primary samples and investigate potential synergistic effects with BCL-2 inhibitor venetoclax to overcome limitations in apoptosis induction. MK-2206 incubation reduced AKT phosphorylation and influenced downstream signaling activity. Interestingly, after MK-2206 mono application tumor cell proliferation and metabolic activity were diminished significantly independently of basal AKT phosphorylation. Morphological changes but no induction of apoptosis was detected in the observed cell lines. In contrast, primary samples cultivated in a protective microenvironment showed a decrease in vital cells. Combined MK-2206 and venetoclax incubation resulted in partially synergistic anti-proliferative effects independently of application sequence in SEM and RS4;11 cell lines. Venetoclax-mediated apoptosis was not intensified by addition of MK-2206. Functional assessment of BCL-2 inhibition via Bax translocation assay revealed slightly increased pro-apoptotic signaling after combined MK-2206 and venetoclax incubation. In summary, we demonstrate that the pan-AKT inhibitor MK-2206 potently blocks B-ALL cell proliferation and for the first time characterize the synergistic effect of combined MK-2206 and venetoclax treatment in B-ALL.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1321
Author(s):  
Cheng-Yun Peng ◽  
Chia-Hung Dylan Tsai

Droplet manipulation is important in the fields of engineering, biology, chemistry, and medicine. Many techniques, such as electrowetting and magnetic actuation, have been developed for droplet manipulation. However, the fabrication of the manipulation platform often takes a long time and requires well-trained skills. Here we proposed a novel method that can directly generate and manipulate droplets on a polymeric surface using a universal plasma jet. One of its greatest advantages is that the jet can tremendously reduce the time for the platform fabrication while it can still perform stable droplet manipulation with controllable droplet size and motion. There are two steps for the proposed method. First, the universal plasma jet is set in plasma mode for modifying the manipulation path for droplets. Second, the jet is switched to air-jet mode for droplet generation and manipulation. The jetted air separates and pushes droplets along the plasma-treated path for droplet generation and manipulation. According to the experimental results, the size of the droplet can be controlled by the treatment time in the first step, i.e., a shorter treatment time of plasma results in a smaller size of the droplet, and vice versa. The largest and the smallest sizes of the generated droplets in the results are about 6 µL and 0.1 µL, respectively. Infrared spectra of absorption on the PDMS surfaces with and without the plasma treatment are investigated by Fourier-transform infrared spectroscopy. Tests of generating and mixing two droplets on a PDMS surface are successfully achieved. The aging effect of plasma treatment for the proposed method is also discussed. The proposed method provides a simple, fast, and low-cost way to generate and manipulate droplets on a polymeric surface. The method is expected to be applied to droplet-based cell culture by manipulating droplets encapsulating living cells and towards wall-less scaffolds on a polymeric surface.


2017 ◽  
Vol 6 (1) ◽  
pp. 25-29 ◽  
Author(s):  
Yuchi Jia ◽  
Xiaomei Wu

Abstract Objective We aimed to evaluate the combined antibacterial effects of allicin in combination with levofloxacin and ceftriaxone on Shigella isolated from the intestinal tract in vitro. Materials and Methods Using a checkerboard design, broth microdilution assay was used to test the effects of the compounds on the organism. We also determined the MIC of the two groups of antibacterial drugs against 30 strains of Shigella and calculated the fractional inhibitory concentration (FIC) index, to judge the combination effect. Result After the combined application of allicin and ceftriaxone the MIC decreased significantly. Distribution of the FIC index was as follows: FIC ≤0.5, accounting for 10%; 0.5< FIC ≤1.0, accounting for 60%; 1 < FIC ≤2, accounting for 30%; FIC >2, percentage is zero. After combined application of allicin and levofloxacin, distribution of FIC index was as follows: FIC≤0.5, ratio is zero; 0.5< FIC ≤1, accounting for 56.7%; 1 < FIC ≤2, accounting for 43.3%; FIC >2, ratio is zero. Conclusion After the combined use of ceftriaxone, levofloxacin, and allicin, most of the tests showed synergistic effects and additive effects on Shigella, while some of them showed no correlation and no antagonistic effect.


Author(s):  
Marcel Patindoilba Sawadogo ◽  
Adama Zida ◽  
Issiaka Soulama ◽  
Samuel S Sermé ◽  
Thierry Kiswendsida Guiguemdé ◽  
...  

The aim of this study is to have an idea on the molecular mechanisms of C. albicans resistance to fluconazole in Burkina Faso, by studying the polymorphism of the ERG11 gene, and its implication in the C. albicans virulence and resistance in vivo according to the Galleria mellonella model; (2) Methods: Ten (10) clinical strains including, 5 resistant and 5 susceptible and 1 virulent and susceptible reference strain SC5314 are used. For the estimation of virulence, the larvae were inoculated with 10 &mu;L of C. albicans cell suspension at variable concentrations: 2,5.105, 5.105, 1.106, and 5.106 CFU/larva of each strain. For the in vivo efficacy study, fluconazole was administered at 1, 4 and 16 mg/kg respectively to G. mellonella larvae, after infection by inoculum 5.106 CFU / larvae of each strain; (3) Results: Six (6) non-silent mutations in the ERG11 gene (K143R, F145L, G307S, S405F, G448E, V456I on ERG11p) were found in 4 resistant isolates. Larval mortality depended on fungal burden and strain. The inoculum 5.106 CFU caused 100% mortality in 2 days for the 2 CAAL-1 and CAAL-2 strains carrying the F145L mutation, in 3 days for the reference strain SC5314, in 4 days for the ensemble of resistant strains, and in 5 days for the ensemble of susceptible strains. The comparison of the mortality due to the reference strain SC5314 CFU / larva and the average mortality due to the two mutant F145L strains, shows a significant difference (P &lt;0.05).Fluconazole significantly protected (P&gt; 0.05) the larvae from infection by susceptible strains and the reference strain. However, 100% mortality in 6 days after injection of the resistant strains, was observed (4) Conclusions: Certain mutations in the ERG11 gene such as the F145L mutation are thought to be a source of increased virulence in Candida albicans. Fluconazole effectively protected larvae from infection by susceptible strains in vivo, unlike resistant strain


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi72-vi72
Author(s):  
Yang Wang ◽  
Jingsong Wu ◽  
Zhiyong Qin ◽  
Enmin Wang ◽  
Yu Yao ◽  
...  

Abstract OBJECTIVES Tumor Treating Fields (TTFields) has been shown to improve the overall survival of newly diagnosed GBM (ndGBM) when combined with Temozolomide (TMZ) in the EF-14 trial. Preclinical studies suggested synergistic effects between TTFields and radiotherapy. This study is aimed to examine the safety and efficacy of combination therapy (chemoradiation concurrent with TTFields treatment) for ndGBM patients in China. METHODS From July 2020 to May 2021, 33 ndGBM patients were treated with combination therapy (radiation target volume following NCCN guidelines). Eight patients had transducer array removed during radiotherapy, others retained transducer array on scalp. All patients had assessment every two months by MRI scan. The adverse reactions and monthly compliance data for TTFields treatment were recorded. RESULTS Twenty-five patients have completed the combination therapy. Three patients retained transducer array during radiotherapy but did not limit the scalp dose (mean: 21.7Gy). As a result, Grade 2 cutaneous adverse reactions developed, and TTFields treatment was suspended. Four patients suspended TTFields treatment due to other adverse reactions. The remaining patients who had limited scalp doses (mean &lt; 20Gy) had no suspension or delay in combination therapy due to cutaneous adverse reactions. The median time of TTFields treatment during radiotherapy is 21.24 hours/day (IQR:19.26,22.08). Two patients had progressive disease, 1 died of pulmonary infection, and 30 had stable disease. The incidence of cutaneous AE was 48.5% (16/33), Grade1: 27.2% (9/33), Grade 2: 21.2% (7/33), and Grade 3: 3% (1/33). CONCLUSIONS The combination therapy was well tolerated in Chinese patients with ndGBM. Removing transducer array during radiotherapy may increase the frequency of array replacement while reducing the patient's daily treatment time. However, retaining transducer array will increase cutaneous adverse reactions. Scalp dose limitation is required yet it allows a maximum duration of TTFields. Further follow-ups are ongoing.


2018 ◽  
Vol 6 (25) ◽  
Author(s):  
Danielle do Carmo Ferreira Bruno ◽  
Thais Fernanda Bartelli ◽  
Marcelo R. S. Briones

Polymicrobial infections with mixed-species biofilms are important health problems because of increased antimicrobial resistance and worse patient outcomes than with monomicrobial infections. Here, we present the whole-genome sequence of Staphylococcus epidermidis strain GTH12, which was cocultured with the yeast Candida albicans SC5314 (generating C. albicans strain SC5314 GTH12), thus providing genomic information on polymicrobial infections.


2006 ◽  
Vol 5 (1) ◽  
pp. 192-202 ◽  
Author(s):  
Daniel Dignard ◽  
Malcolm Whiteway

ABSTRACT Candida albicans contains a functional mating response pathway that is similar to the well-studied system of Saccharomyces cerevisiae. We have characterized a regulator of G protein signaling (RGS) homolog in C. albicans with sequence similarity to the SST2 gene of Saccharomyces cerevisiae. Disruption of this gene, which had been designated SST2, causes an opaque MTL a/MTL a derivative of strain SC5314 to show hypersensitivity to the C. albicans α-factor. This hypersensitivity generates an enhanced cell cycle arrest detected in halo assays but reduces the overall mating efficiency of the cells. Transcriptional profiling of the pheromone-regulated gene expression in the sst2 mutant shows a pattern of gene induction similar to that observed in wild-type cells, but the responsiveness is heightened. This involvement of an RGS in the sensitivity to pheromone is consistent with the prediction that the mating response pathway in C. albicans requires the activation of a heterotrimeric G protein.


2013 ◽  
Vol 12 (3) ◽  
pp. 438-449 ◽  
Author(s):  
Xiongjun Wang ◽  
Peng Chang ◽  
Jianping Ding ◽  
Jiangye Chen

ABSTRACTCandida albicansis associated with humans, as both a harmless commensal organism and a pathogen. Adaption to human body temperature is extremely important for its growth and morphogenesis.Saccharomyces cerevisiaeEsa1, a member of the MYST family HATs (histone acetyltransferases) and the catalytic subunit of the NuA4 complex, and its homologues in other eukaryotes have been shown to be essential for cell growth. To investigate the functional roles of two MYST family HATs, Esa1 and Sas2 inC. albicans, we deletedESA1andSAS2in theC. albicansgenome and performed cell growth analyses. Our results demonstrated thatC. albicansEsa1 is not essential for general growth but is essential for filamentous growth. Theesa1/esa1mutant cells exhibited sensitivity to thermal, genotoxic, and oxidative stresses but tolerance to cold, osmotic, and cell wall stresses. In contrast, thesas2/sas2mutant adapted to growth at higher temperatures and promoted filament formation at lower temperatures, resembling the phenotype of aC. albicansstrain overexpressingESA1. Cells with deletions of bothESA1andSAS2were inviable, reflecting the functional redundancy in cell growth.C. albicansEsa1 and Sas2 have distinct and synergistic effects on histone acetylation at H4K5, H4K12, and H4K16. Esa1 contributes mainly to acetylation of H4K5 and H4K12, whereas Sas2 contributes to acetylation of H4K16. Our findings suggest thatC. albicansEsa1 and Sas2 play opposite roles in cell growth and morphogenesis and contribute coordinately to histone acetylation and gene regulation.


Sign in / Sign up

Export Citation Format

Share Document