scholarly journals End-to-End Automated Guided Modular Vehicle

2020 ◽  
Vol 10 (12) ◽  
pp. 4400 ◽  
Author(s):  
Luis A. Curiel-Ramirez ◽  
Ricardo A. Ramirez-Mendoza ◽  
Rolando Bautista-Montesano ◽  
M. Rogelio Bustamante-Bello ◽  
Hugo G. Gonzalez-Hernandez ◽  
...  

Autonomous Vehicles (AVs) have caught people’s attention in recent years, not only from an academic or developmental viewpoint but also because of the wide range of applications that these vehicles may entail, such as intelligent mobility and logistics, as well as for industrial purposes, among others. The open literature contains a variety of works related to the subject. They employ a diversity of techniques ranging from probabilistic to ones based on Artificial Intelligence. The increase in computing capacity, well known to many, has opened plentiful opportunities for the algorithmic processing needed by these applications, making way for the development of autonomous navigation, in many cases with astounding results. The following paper presents a low-cost but high-performance minimal sensor open architecture implemented in a modular vehicle. It was developed in a short period of time, surpassing many of the currently available solutions found in the literature. Diverse experiments were carried out in the controlled and circumscribed environment of an autonomous circuit that demonstrates the efficiency of the applicability of the developed solution.

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Mayra K. S. Monteiro ◽  
Djalma R. Da Silva ◽  
Marco A. Quiroz ◽  
Vítor J. P. Vilar ◽  
Carlos A. Martínez-Huitle ◽  
...  

This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5–1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.


2021 ◽  
Vol 11 (10) ◽  
pp. 4610
Author(s):  
Simone Berneschi ◽  
Giancarlo C. Righini ◽  
Stefano Pelli

Glasses, in their different forms and compositions, have special properties that are not found in other materials. The combination of transparency and hardness at room temperature, combined with a suitable mechanical strength and excellent chemical durability, makes this material indispensable for many applications in different technological fields (as, for instance, the optical fibres which constitute the physical carrier for high-speed communication networks as well as the transducer for a wide range of high-performance sensors). For its part, ion-exchange from molten salts is a well-established, low-cost technology capable of modifying the chemical-physical properties of glass. The synergy between ion-exchange and glass has always been a happy marriage, from its ancient historical background for the realisation of wonderful artefacts, to the discovery of novel and fascinating solutions for modern technology (e.g., integrated optics). Getting inspiration from some hot topics related to the application context of this technique, the goal of this critical review is to show how ion-exchange in glass, far from being an obsolete process, can still have an important impact in everyday life, both at a merely commercial level as well as at that of frontier research.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shweta Banerjee

PurposeThere are ethical, legal, social and economic arguments surrounding the subject of autonomous vehicles. This paper aims to discuss some of the arguments to communicate one of the current issues in the rising field of artificial intelligence.Design/methodology/approachMaking use of widely available literature that the author has read and summarised showcasing her viewpoints, the author shows that technology is progressing every day. Artificial intelligence and machine learning are at the forefront of technological advancement today. The manufacture and innovation of new machines have revolutionised our lives and resulted in a world where we are becoming increasingly dependent on artificial intelligence.FindingsTechnology might appear to be getting out of hand, but it can be effectively used to transform lives and convenience.Research limitations/implicationsFrom robotics to autonomous vehicles, countless technologies have and will continue to make the lives of individuals much easier. But, with these advancements also comes something called “future shock”.Practical implicationsFuture shock is the state of being unable to keep up with rapid social or technological change. As a result, the topic of artificial intelligence, and thus autonomous cars, is highly debated.Social implicationsThe study will be of interest to researchers, academics and the public in general. It will encourage further thinking.Originality/valueThis is an original piece of writing informed by reading several current pieces. The study has not been submitted elsewhere.


Separations ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 13
Author(s):  
Petra Ranušová ◽  
Ildikó Matušíková ◽  
Peter Nemeček

A solid-phase extraction (SPE) procedure was developed for simultaneous monitoring of sixteen different phenolics of various polarity, quantified by high-performance liquid chromatography (HPLC). The procedure allowed screening the accumulation of intermediates in different metabolic pathways that play a crucial role in plant physiology and/or are beneficial for human health. Metabolites mostly involved in phenylpropanoid, shikimate, and polyketide pathways comprise chlorogenic acid, gentisic acid, vanillic acid, caffeic acid, protocatechuic acid, ferulic acid, rutin, quercetin, epicatechin, gallic acid, sinapic acid, p-coumaric acid, o-coumaric acid, vanillin; two rarely quantified metabolites, 2,5-dimethoxybenzoic acid and 4-methoxycinnamic acid, were included as well. The procedure offered low cost, good overall efficiency, and applicability in laboratories with standard laboratory equipment. SPE recoveries were up to 99.8% at various concentration levels. The method allowed for routine analysis of compounds with a wide range of polarity within a single run, while its applicability was demonstrated for various model plant species (tobacco, wheat, and soybean), as well as different tissue types (shoots and roots).


2019 ◽  
Vol 16 (3) ◽  
pp. 117-123
Author(s):  
Tsung-Ching Huang ◽  
Ting Lei ◽  
Leilai Shao ◽  
Sridhar Sivapurapu ◽  
Madhavan Swaminathan ◽  
...  

Abstract High-performance low-cost flexible hybrid electronics (FHE) are desirable for applications such as internet of things and wearable electronics. Carbon nanotube (CNT) thin-film transistor (TFT) is a promising candidate for high-performance FHE because of its high carrier mobility, superior mechanical flexibility, and material compatibility with low-cost printing and solution processes. Flexible sensors and peripheral CNT-TFT circuits, such as decoders, drivers, and sense amplifiers, can be printed and hybrid-integrated with thinned (<50 μm) silicon chips on soft, thin, and flexible substrates for a wide range of applications, from flexible displays to wearable medical devices. Here, we report (1) a process design kit (PDK) to enable FHE design automation for large-scale FHE circuits and (2) solution process-proven intellectual property blocks for TFT circuits design, including Pseudo-Complementary Metal-Oxide-Semiconductor (Pseudo-CMOS) flexible digital logic and analog amplifiers. The FHE-PDK is fully compatible with popular silicon design tools for design and simulation of hybrid-integrated flexible circuits.


Author(s):  
Raquel Pinto ◽  
André Cardoso ◽  
Sara Ribeiro ◽  
Carlos Brandão ◽  
João Gaspar ◽  
...  

Microelectromechanical Systems (MEMS) are a fast growing technology for sensor and actuator miniaturization finding more and more commercial opportunities by having an important role in the field of Internet of Things (IoT). On the same note, Fan-out Wafer Level Packaging (FOWLP), namely WLFO technology of NANIUM, which is based on Infineon/ Intel eWLB technology, is also finding further applications, not only due to its high performance, low cost, high flexibility, but also due to its versatility to allow the integration of different types of components in the same small form-factor package. Despite its great potential it is still off limits to the more sensitive components as micro-mechanical devices and some type of sensors, which are vulnerable to temperature and pressure. In the interest of increasing FOWLP versatility and enabling the integration of MEMS, new methods of assembling and processing are continuously searched for. Dielectrics currently used for redistribution layer construction need to be cured at temperatures above 200°C, making it one of the major boundary for low temperature processing. In addition, in order to accomplish a wide range of dielectric thicknesses in the same package it is often necessary to stack very different types of dielectrics with impact on bill of materials complexity and cost. In this work, done in cooperation with the International Iberian Nanotechnology Laboratory (INL), we describe the implementation of commercially available SU-8 photoresist as a structural material in FOWLP, allowing lower processing temperature and reduced internal package stress, thus enabling the integration of components such as MEMS/MOEMS, magneto-resistive devices and micro-batteries. While SU-8 photoresist was first designed for the microelectronics industry, it is currently highly used in the fabrication of microfluidics as well as microelectromechanical systems (MEMS) and BIO-MEMS due to its high biocompatibility and wide range of available thicknesses in the same product family. Its good thermal and chemical resistance and also mechanical and rheological properties, make it suitable to be used as a structural material, and moreover it cures at 150°C, which is key for the applications targeted. Unprecedentedly, SU-8 photoresist is tested in this work as a structural dielectric for the redistribution layers on 300mm fan-out wafers. Main concerns during the evaluation of the new WLFO dielectric focused on processability quality; adhesion to multi-material substrate and metals (copper, aluminium, gold, ¦); between layers of very different thicknesses; and overall reliability. During preliminary runs, processability on 300 mm fan-out wafers was evaluated by testing different coating and soft bake conditions, exposure settings, post-exposure parameters, up to developing setup. The outputs are not only on process conditions and results but also on WLFO design rules. For the first time, a set of conditions has been defined that allows processing SU-8 on WLFO, with thickness values ranging from 1 um to 150 um. The introduction of SU-8 in WLFO is a breakthrough in this fast-growing advanced packaging technology platform as it opens vast opportunities for sensor integration in WLP technology.


Beverages ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 62 ◽  
Author(s):  
Claudia Gonzalez Viejo ◽  
Damir D. Torrico ◽  
Frank R. Dunshea ◽  
Sigfredo Fuentes

Beverages is a broad and important category within the food industry, which is comprised of a wide range of sub-categories and types of drinks with different levels of complexity for their manufacturing and quality assessment. Traditional methods to evaluate the quality traits of beverages consist of tedious, time-consuming, and costly techniques, which do not allow researchers to procure results in real-time. Therefore, there is a need to test and implement emerging technologies in order to automate and facilitate those analyses within this industry. This paper aimed to present the most recent publications and trends regarding the use of low-cost, reliable, and accurate, remote or non-contact techniques using robotics, machine learning, computer vision, biometrics and the application of artificial intelligence, as well as to identify the research gaps within the beverage industry. It was found that there is a wide opportunity in the development and use of robotics and biometrics for all types of beverages, but especially for hot and non-alcoholic drinks. Furthermore, there is a lack of knowledge and clarity within the industry, and research about the concepts of artificial intelligence and machine learning, as well as that concerning the correct design and interpretation of modeling related to the lack of inclusion of relevant data, additional to presenting over- or under-fitted models.


2019 ◽  
Vol 72 (04) ◽  
pp. 917-930
Author(s):  
Fang-Shii Ning ◽  
Xiaolin Meng ◽  
Yi-Ting Wang

Connected and Autonomous Vehicles (CAVs) have been researched extensively for solving traffic issues and for realising the concept of an intelligent transport system. A well-developed positioning system is critical for CAVs to achieve these aims. The system should provide high accuracy, mobility, continuity, flexibility and scalability. However, high-performance equipment is too expensive for the commercial use of CAVs; therefore, the use of a low-cost Global Navigation Satellite System (GNSS) receiver to achieve real-time, high-accuracy and ubiquitous positioning performance will be a future trend. This research used RTKLIB software to develop a low-cost GNSS receiver positioning system and assessed the developed positioning system according to the requirements of CAV applications. Kinematic tests were conducted to evaluate the positioning performance of the low-cost receiver in a CAV driving environment based on the accuracy requirements of CAVs. The results showed that the low-cost receiver satisfied the “Where in Lane” accuracy level (0·5 m) and achieved a similar positioning performance in rural, interurban, urban and motorway areas.


2020 ◽  
Vol 12 (16) ◽  
pp. 2575 ◽  
Author(s):  
Giuseppe Stanghellini ◽  
Fabrizio Del Bianco ◽  
Luca Gasperini

OpenSWAP is a class of innovative open architecture, low cost autonomous vehicles for geological/geophysical studies of shallow water environments. Although they can host different types of sensors, these vehicles were specifically designed for geophysical surveys, i.e., for the acquisition of bathymetric and stratigraphic data through single- and multibeam echosounders, side-scan sonars, and seismic-reflection systems. The main characteristic of the OpenSWAP vehicles is their ability of following pre-defined routes with high accuracy under acceptable weather and sea conditions. This would open the door to 4D (repeated) surveys, which constitute a powerful tool to analyze morphological and stratigraphic changes of the sediment/water interface and of the shallow substratum eventually caused by sediment dynamics (erosion vs. deposition), slumps and gravitative failures, earthquakes (slip along seismogenic faults and secondary effects of shaking), tsunamis, etc. The low cost and the open hardware/software architectures of these systems, which can be modified by the end users, lead for planning and execution of cooperative and adaptive surveys with different instruments not yet implemented or tested. Together with a technical description of the vehicles, we provide different case studies where they were successfully employed, carried out in environments not, or very difficultly accessed through conventional systems.


1995 ◽  
Vol 05 (03) ◽  
pp. 455-463 ◽  
Author(s):  
S. FINCO ◽  
F. H. BEHRENS ◽  
J. GUILHERME ◽  
M. I. CASTRO SIMAS ◽  
M. LANÇA

A smart power integrated circuit to be fabricated with standard CMOS technologies was developed in view to obtain a versatile, high performance and low cost basic building block, suitable for a wide range of low power applications. This circuit merges together two transistors, connected in a low-side/high-side switch configuration, with specific control and protection circuitries. These transistors are NMOS medium-voltage lateral structures, which use the lightly doped drain concept and are targeted to handle currents up to 2 A and to support 25 V at OFF state. Experimental results on different applications and topologies show the applicability of the smart switching cell on portable systems power supplies and amplifiers (up to 20 W). Its performance also proves the ability of standard CMOS technologies to implement smart power circuits.


Sign in / Sign up

Export Citation Format

Share Document