scholarly journals Comparative Study of Glass Fiber Content Measurement Methods for Inspecting Fabrication Quality of Composite Ship Structures

2020 ◽  
Vol 10 (15) ◽  
pp. 5130 ◽  
Author(s):  
Zhiqiang Han ◽  
Sookhyun Jeong ◽  
Jackyou Noh ◽  
Daekyun Oh

A comparative study of glass fiber content (Gc) measurement methods was conducted using actual glass fiber reinforced plastic laminates from the hull plate of a 26-ton yacht. Two prototype side hull plates with the design Gc (40 wt.%) and higher Gc (64 wt.%) were prepared. Four methods were used to study the samples: the calculation method suggested by classification societies’ rules; two direct measurement methods using either calipers and scales or a hydrometer; and the burn-off method, wherein the resin matrix is combusted from the laminates. The results were compared and analyzed to identify the accuracy and benefits of each method. The rule calculation method was found to be effective if the quality of the manufacturing process is known. However, fabrication errors in the laminate structures cannot be detected. Additionally, while direct methods are used to measure the density of glass fibers using measurements of the densities of raw materials and laminates, the volume of inner defects occurring during the fabrication of laminates could not be considered. Finally, it was found that the burn-off method measures Gc and considers the defect volume (voids) inside laminates as well as the non-uniformity of the external shape.

2019 ◽  
Vol 30 (6) ◽  
pp. 2833-2843 ◽  
Author(s):  
Adam Gnatowski ◽  
Agnieszka Kijo-Kleczkowska ◽  
Rafał Gołębski ◽  
Kamil Mirek

Purpose The issues concerning the prediction of changes in properties of polymer materials as a result of adding reinforcing fibers are currently widely discussed in the field of polymer material processing. This paper aims to present strengths and weaknesses of composites based on polymer materials strengthened with fibers. It touches upon composite cracking at the junction of a matrix and its reinforcement. It also discusses the analysis of changes in properties of chosen materials as a result of adding reinforcing fibers. The paper shows improvement in the strength of polymer materials with fiber addition, which is extremely important, because these types of composites are used in the aerospace, automotive and electrical engineering industries. Design/methodology/approach Comparing the properties of matrix strength with fiber properties is practically impossible. Thus, fiber tensile strength and composite tensile strength shall be compared (González et al., 2011): tensile (glass fiber GF) = 900 [MPa], elongation ΔL≈ 0; yield point (polyamide 66) = 70−90 [MPa], elongation Δ[%] = 3,5-18; tensile (polyamide 66 + 15% GF) = 80-125 [MPa], elongation Δ[%] ≈ 0; tensile (polyamide 66 + 30% GF) = 190 [MPa], elongation Δ[%] ≈ 0; yield point (polyamide 6) = 45-85 [MPa], elongation Δ[%] = 4-15; tensile (polyamide 6 + 15% GF) = 80-125 [MPa], elongation Δ[%] ≈ 0; tensile (polyamide 6 + 30% GF) = 95-130 [MPa] elongation Δ[%] ≈ 0. Comparison of properties of selected polymers and composites is presented in Tables 1−10 and Figures 1 and 2. The measurement methodology is presented in detail in the paper Kula et al. (2018). The increase in fiber content (to the extent discussed) leads to the increase in yield strength stresses and hardness. The value of yield strength for polyamide with the addition of fiberglass grows gradually with the increase in fiber content. The hardness of the composite of polyamide with glass balls increases together with the increase in reinforcement content. The changes of these values do not occur linearly. The increase in fiber content has a slight impact on density change (the increase of about 1 g/mm3 per 10 per cent). Findings The use of polymers as a matrix allows to give composites features such as: lightness, corrosion resistance, damping ability, good electrical insulation and thermal and easy shaping. Polymers used as a matrix perform the following functions in composites: give the desired shape to the products, allow transferring loads to fibers, shape thermal, chemical and flammable properties of composites and increase the possibilities of making composites. Fiber-reinforced polymer composites are the effect of searching for new construction materials. Glass fibers show tensile strength, stiffness and brittleness, while the polymer matrix has viscoelastic properties. Glass fibers have a uniform shape and dimensions. Fiber-reinforced composites are therefore used to increase strength and stiffness of materials. Polymers have low tensile strength, exhibit high deformability. Polymers reinforced by glass fiber have a high modulus of elasticity and therefore provide better the mechanical properties of the material. Composites with glass fibers do not exhibit deformations in front of cracking. An increase in the content of glass fiber in composites increases the tensile strength of the material. Polymers reinforced by glass fiber are currently one of the most important construction materials and are widely used in the aerospace, automotive and electro-technical industries. Originality/value The paper presents the test results for polyethylene composites with 25 per cent and 50 per cent filler coming from recycled car carpets of various car makes. The tests included using differential scanning calorimetry, testing material hardness, material tensile strength and their dynamic mechanical properties.


Author(s):  
V. Bhikshma ◽  
K. Pradeep Kumar

In this work, an attempt is made to investigate the influence of the glass fiber on the natural and recycled aggregate concrete. Ten beams of size 1500 mm x150 mm x 230 mm were cast and curing was done for 28 days. The flexural behavior of beams is studied in the present work with glass fiber for recycled aggregate concrete. There was total of five batches of concrete mixes for the grade M30 for natural and recycled aggregate. The glass fibers were added in proportion by 0.50%, 1%, 1.5% and 2% by weight of cement. The load carrying capacity of specimens with 100% (RCA) with 2% fiber content is increased by 14% compared to that of 100% (RCA) with 0.5% fiber content. Compared to beam A (NCA) 0%fibre, the moment of beam E (RCA) at 2%fibre is decreased by 6%. The investigations indicated encouraging results for Recycled Aggregate Concrete (RAC) beams with glass fibers in all aspects, thus, pointing to recycled aggregate as potential alternative source of aggregate.


2012 ◽  
Vol 628 ◽  
pp. 27-32 ◽  
Author(s):  
Zhou Chen ◽  
Xue Yu Cheng ◽  
Zhao Feng Chen ◽  
Juan Zhang ◽  
Yong Yang ◽  
...  

In this paper, glass fibers were prepared by centrifugal-spinneret-blow(CSB)process. The diameter and microstructure of glass fibers have been investigated by scanning electron microscopy(SEM)and vertical optical microscope(VOM).The thermal conductivity and the thickness of glass fiber samples were determined by heat flow meter thermal conductivity instrumentation.The results indicated that the diameter of glass fibers prepared by CSB process can reach the ultrafine grade by adjusting the ratio of raw materials and process parameters.The thermal conductivity of glass fiber sample was 0.0298W/(m·K)when the diameter was 3μm and the density was 62kg/m3.The thermal conductivity of glass fiber sample decreased with the reduction of fiber diameter when the density of glass fiber sample is constant.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 446
Author(s):  
Jeong-Dae Kim ◽  
Jeong-Hyeon Kim ◽  
Dong-Ha Lee ◽  
Dong-Ju Yeom ◽  
Jae-Myung Lee

Polyisocyanurate foam (PIF) has been adopted as a liquefied natural gas (LNG) insulating material owing to its various mechanical merits such as high structural stability and mechanical strength, and excellent insulating ability. In an attempt to increase the mechanical strength of PIF, chopped-glass-fiber-reinforced polyisocyanurate foam (CGR-PIF) was synthesized by adding chopped glass fibers to polyol and isocyanate, which are the raw materials used in the polymerization process for producing PIF. The main objective is to closely observe the compression material characteristics of PIF and CGR-PIF in terms of the cryogenic temperature. Therefore, compressive tests were conducted at cryogenic temperature including low temperatures, and microscopic images were obtained to analyze the cell size and distribution that affects the mechanical and thermal properties of the foam. Furthermore, recovery ratio and weight loss which are important factors of brittle fracture were evaluated, and the applicability of the foams to a cryogenic environment was evaluated. Finally, thermal conductivity, an important parameter of insulation, was evaluated. The obtained results confirm that the compressive strength of CGR-PIF significantly increases at cryogenic temperatures; moreover, a relatively higher thermal conductivity was observed in the case of CGR-PIF as compared to that of PIF owing to the chopped glass fibers.


2020 ◽  
Vol 10 (15) ◽  
pp. 5352
Author(s):  
George Karalis ◽  
Kyriaki Tsirka ◽  
Lazaros Tzounis ◽  
Christos Mytafides ◽  
Lampros Koutsotolis ◽  
...  

This experimental study is associated with the modification of glass fibers with efficient, organic, functional, thermoelectrically enabled coatings. The thermoelectric (TE) behavior of the coated glass fiber tows with either inherent p semiconductor type single wall carbon nanotubes (SWCNTs) or the n-type molecular doped SWCNTs were examined within epoxy resin matrix in detail. The corresponding morphological, thermogravimetric, spectroscopic, and thermoelectric measurements were assessed in order to characterize the produced functional interphases. For the p-type model composites, the Seebeck coefficient was +16.2 μV/K which corresponds to a power factor of 0.02 μW/m∙K2 and for the n-type −28.4 μV/K which corresponds to power factor of 0.12 μW/m∙K2. The p–n junction between the model composites allowed for the fabrication of a single pair thermoelectric element generator (TEG) demonstrator. Furthermore, the stress transfer at the interphase of the coated glass fibers was studied by tow pull-out tests. The reference glass fiber tows presented the highest interfacial shear stress (IFSS) of 42.8 MPa in comparison to the p- and n-type SWCNT coated GF model composites that exhibited reduced IFSS values by 10.1% and 28.1%, respectively.


2021 ◽  
Vol 11 (1) ◽  
pp. 364
Author(s):  
Ahmed Khater ◽  
Dong Luo ◽  
Moustafa Abdelsalam ◽  
Yanchao Yue ◽  
Yueqin Hou ◽  
...  

Moisture damage and low-temperature cracking are common distresses experienced by road pavement. Different types of modifiers, such as fibers, can be used to improve the quality of asphalt pavements. In this paper, lignin and glass fiber were selected as additives to enhance the water- and low-temperature stability of the asphalt mixtures. The main objective of this study was to evaluate the composite effects of adding lignin fiber and glass fiber to a bituminous mix using experimental methods. The Marshall immersion, freeze–thaw splitting, and three-point bending tests were applied to evaluate the efficiency of lignin fiber (and/or) glass fiber modified asphalt mixes with regard to moisture damage and low temperature. Four kinds of asphalt mixtures, namely, the control asphalt mix (C), lignin fiber modified asphalt mix (L), glass fiber modified asphalt mix (G), and a composite of lignin fiber and glass fiber modified asphalt mix (LG) were evaluated. The experimental results showed that with the addition of 0.30% lignin fiber and 0.30% glass fiber the water stability, low-temperature stability, and quality of bituminous mix were improved significantly. With lignin fiber, the asphalt mixtures showed better resistance to thermal cracking, while glass fiber resulted in greater moisture susceptibility. The composite admixture was more effective than either lignin or glass fiber in modifying the asphalt performance. This clarifies the great beneficial effect of using the composite mixture in the asphalt mixtures industry.


Author(s):  
V. Onischuk ◽  
Y. Lazarova ◽  
E. Evtushenko

The article presents the results of the evaluation of the study of the possibility of using ash and slag waste (ash) of Reftinskaya GRES as a component of the charge used in the production of continuous glass fiber of high-modulus (type E), dielectric resistant (type S) and high-strength, chemically stable basalt (type B) compositions. Since the chemical composition of ash is multicomponent and significantly differs from the compositions of raw materials traditionally used in the production of glass fiber, in order to establish the technological features of its use as a component of the charge, experimental compositions of glasses were designed to achieve their specified physical and mechanical properties, with the maximum possible content of ash in the composition of glass charges. A priori assessment showed that acceptable properties of glass for glass fiber compositions E, S and B can be obtained at the content of 36%, 68% and 64% ash in the charges, respectively, for the listed types of glass. The determination of the glass transition temperature intervals of the experimental charge compositions showed that an increase in the ash content in them increases the temperature that ensures the production of a high-quality melt. Studies of the tendency of experimental glass compositions to crystallization, which prevents the effective process of fiber formation, allowed us to determine that almost all compositions have a reduced tendency to crystallization, therefore, they can be used in the production of glass fibers of types S, E and B.


2012 ◽  
Vol 476-478 ◽  
pp. 2014-2019
Author(s):  
Xiao Jiang ◽  
Long Di Cheng ◽  
Jian Yong Yu ◽  
Qin Wang ◽  
Elena Stojanovska ◽  
...  

The akund fiber has great potential to be used in the textile industry benefiting from its excellent properties. The adoption of akund fiber from calotropis gigantea could substitute or supplement cotton as raw materials for textile fabric and might reduce the possible damage to the environment. Therefore, The study in this paper on the relationship between carding procedure and the quality of akund fiber sliver aimed at optimizing the process of this new kind fiber on a flat top card has significant meaning. The results in this paper show that high quality slivers can be produced by using new wires, low speed of card elements or proper akund fiber content in blended yarn. However, decreasing the number of moving flats in the main carding zone too much would deteriorate the sliver quality.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 17
Author(s):  
Oumayma Hamlaoui ◽  
Olga Klinkova ◽  
Riadh Elleuch ◽  
Imad Tawfiq

This work presents the influences of glass fiber content on the mechanical and physical characteristics of polybutylene terephthalate (PBT) reinforced with glass fibers (GF). For the mechanical characterization of the composites depending on the GF reinforcement rate, tensile tests are carried out. The results show that increasing the GF content in the polymer matrix leads to an increase in the stiffness of the composite but also to an increase in its brittleness. Scanning Electron Microscope analysis is performed, highlighting the multi-scale dependency on types of damage and macroscopic behavior of the composites. Furthermore, flammability tests were performed. They permit certifying the flame retardancy capacity of the electrical composite part. Additionally, fluidity tests are carried out to identify the flow behavior of the melted composite during the polymer injection process. Finally, the cracking resistance is assessed by riveting tests performed on the considered electrical parts produced from composites with different GF reinforcement. The riveting test stems directly from the manufacturing process. Therefore, its results accurately reflect the fragility of the material used.


2015 ◽  
Vol 754-755 ◽  
pp. 59-65
Author(s):  
Mohammad Firdaus Abu Hashim ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Che Mohd Ruzaidi Ghazali ◽  
Kamarudin Hussin ◽  
Muhammad Faheem Mohd Tahir ◽  
...  

Generally, the composite pipes are fabricated using glass fiber and polyester resin matrix by hand lay-up and also by 2-axis filament winding machine. In this work, a filament winding machine was used for the fabrication of geopolymer composites pipes. In this study, raw material based geopolymer resin composites reinforced by continuous glass fiber were used for fabrication and synthesized by different types of raw materials which is fly ash, silica sand, white clay, kaolin and pozzolanic. The effects of different types of raw materials on the product were investigated. The morphological properties, density and burnout of the resulting composite were determined on an optical microscope for morphology and densimeter for bulk density. The results shows fly ash has the higher density compare to the others and kaolin has the highest reduction of weight percentage.


Sign in / Sign up

Export Citation Format

Share Document