scholarly journals Impact of Structural Defects on the Surface Quality of Hardwood Species Sliced Veneers

2020 ◽  
Vol 10 (18) ◽  
pp. 6265
Author(s):  
Vasiliki Kamperidou ◽  
Efstratios Aidinidis ◽  
Ioannis Barboutis

The surface roughness constitutes one of the most critical properties of wood and wood veneers for their extended utilization, affecting the bonding ability of the veneers with one another in the manufacturing of wood composites, the finishing, coating and preservation processes, and the appearance and texture of the material surface. In this research work, logs of five significant European hardwood species (oak, chestnut, ash, poplar, cherry) of Balkan origin were sliced into decorative veneers. Their surface roughness was examined by applying a stylus tracing method, on typical wood structure areas of each wood species, as well as around the areas of wood defects (knots, decay, annual rings irregularities, etc.), to compare them and assess the impact of the defects on the surface quality of veneers. The chestnut veneers presented the smoothest surfaces, while ash veneers, despite the higher density, recorded the highest roughness. In most of the cases, the roughness was found to be significantly lower around the defects, compared to the typical structure surfaces, probably due to lower porosity, higher density and the presence of tensile wood. The results reveal that the presence of defects does not affect the roughness of the veneers and increases neither the processing requirements of the veneer sheets before finishing, nor the respective production cost of veneers and the veneer-based wood panels. The high utilization prospects of the examined wood species in veneer production, even those bearing various defects, is highlighted.

2019 ◽  
Vol 889 ◽  
pp. 155-160
Author(s):  
Trong Mai Nguyen ◽  
Đuc Quy Tran ◽  
Van Nghe Pham ◽  
Van Canh Nguyen

In this research work, the result of the effects of technological parameters on surface roughness in extrusion bars of aluminum alloy were pesented. The results of this study may be used for choosing optimal parameters of extrusion process so that surface quality of extruded bar was improved.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1758
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Nikolaos Vaxevanidis ◽  
John Kechagias

An experimental investigation of the surface quality of the Poly-Jet 3D printing (PJ-3DP) process is presented. PJ-3DP is an additive manufacturing process, which uses jetted photopolymer droplets, which are immediately cured with ultraviolet lamps, to build physical models, layer-by-layer. This method is fast and accurate due to the mechanism it uses for the deposition of layers as well as the 16 microns of layer thickness used. Τo characterize the surface quality of PJ-3DP printed parts, an experiment was designed and the results were analyzed to identify the impact of the deposition angle and blade mechanism motion onto the surface roughness. First, linear regression models were extracted for the prediction of surface quality parameters, such as the average surface roughness (Ra) and the total height of the profile (Rt) in the X and Y directions. Then, a Feed Forward Back Propagation Neural Network (FFBP-NN) was proposed for increasing the prediction performance of the surface roughness parameters Ra and Rt. These two models were compared with the reported ones in the literature; it was revealed that both performed better, leading to more accurate surface roughness predictions, whilst the NN model resulted in the best predictions, in particular for the Ra parameter.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Turgay Ozdemir ◽  
Salim Hiziroglu ◽  
Mutlu Kocapınar

The objective of this study was to evaluate adhesion strength of four wood species, namely, beech (Fagus orientalisLipsky), alder (Alnus glutinosasubsp.barbataYalt.), spruce (Picea orientalisL. Link), and fir (Abies nordmannianasubsp.) coated with cellulosic varnish. Samples were prepared in tangential and radial grain orientations from the above species. Surface quality of the specimens was also measured employing stylus type equipment after samples of all four types of species were sanded with 80- and 180-grit sandpaper prior to coating process. Surface roughness of the specimens sanded with 80-grit sandpaper resulted in significantly higher mean peak-to-valley height (Rz) values based on the measurement employing stylus type profilometer. The highest adhesion strength values of 2.39 N/mm2and 2.03 N/mm2were found for beech and alder samples, respectively. It appears that overall higher roughness characteristics of the specimens exhibited enhanced adherence between substrate and varnish resulting in higher adhesion strength values.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771294 ◽  
Author(s):  
Linzheng Ye ◽  
Xijing Zhu

Cavitation will occur in the process of power ultrasonic honing. To explore the influence of cavitation on the material surface processed, an ultrasonic honing cavitation orthogonal experiment is conducted and three indicators are analyzed, which are pits’ maximum diameter, surface erosion rate, and surface roughness and can represent the single bubble collapse strength, the whole cavitation strength, and the impact of cavitation on material surface quality, respectively. The results show that cavitation leads to micro-pits on material surface. The main factors influencing the pits’ maximum diameter are distance and amplitude in turn; meanwhile, the shorter distance and the greater amplitude result in the larger pits’ maximum diameter. The surface erosion rate is mainly affected by experiment time and distance in order. Amplitude has the greatest influence on the surface roughness. The sample surface roughness reduces and surface quality improves in the condition of distance of 5 mm, amplitude of 65%, and experiment time of 1/3 min. Therefore, cavitation effect can help to enhance the workpiece surface quality in power ultrasonic honing under certain conditions, and the experimental analysis results have reference significance to the actual processing of ultrasonic honing.


Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


2009 ◽  
Vol 69-70 ◽  
pp. 253-257
Author(s):  
Ping Zhao ◽  
Jia Jie Chen ◽  
Fan Yang ◽  
K.F. Tang ◽  
Ju Long Yuan ◽  
...  

Semi-fixed abrasive is a novel abrasive. It has a ‘trap’ effect on the hard large grains that can prevent defect effectively on the surface of the workpiece which is caused by large grains. In this paper, some relevant experiments towards silicon wafers are carried out under the different processing parameters on the semi-fixed abrasive plates, and 180# SiC is used as large grains. The processed workpieces’ surface roughness Rv are measured. The experimental results show that the surface quality of wafer will be worse because of higher load and faster rotating velocity. And it can make a conclusion that the higher proportion of bond of the plate, the weaker of the ‘trap’ effect it has. Furthermore the wet environment is better than dry for the wafer surface in machining. The practice shows that the ‘trap’ effect is failure when the workpiece is machined by abrasive plate which is 4.5wt% proportion of bond in dry lapping.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shimin Dai ◽  
Hailong Liao ◽  
Haihong Zhu ◽  
Xiaoyan Zeng

Purpose For the laser powder bed fusion (L-PBF) technology, the side surface quality is essentially important for industrial applicated parts, such as the inner flow parts. Contour is generally adopted at the parts’ outline to enhance the side surface quality. However, the side surface roughness (Ra) is still larger than 10 microns even with contour in previous studies. The purpose of this paper is to study the influence of contour process parameters, laser power and scanning velocity on the side surface quality of the AlSi10Mg sample. Design/methodology/approach Using L-PBF technology to manufacture AlSi10Mg samples under different contour process parameters, use a laser confocal microscope to capture the surface information of the samples, and obtain the surface roughness Ra and the maximum surface height Rz of each sample after analysis and processing. Findings The results show that the side surface roughness decreases with the increase of the laser power at the fixed scanning velocity of 1,000 mm/s, the side surface roughness Ra stays within the error range as the contour velocity increases. It is found that the Ra increases with the scanning velocity increasing and the greater the laser power with the greater Ra increases when the laser power of contour process parameters is 300 W, 350 W and 400 W. The Rz maintain growth with the contour scanning velocity increasing at constant laser power. The continuous uniform contour covers the pores in the molten pool of the sample edge and thus increase the density of the sample. Two mechanisms named “Active adhesion” and “Passive adhesion” cause sticky powder. Originality/value Formation of a uniform and even contour track is key to obtain the good side surface quality. The side surface quality is determined by the uniformity and stability of the contour track when the layer thickness is fixed. These research results can provide helpful guidance to improve the surface quality of L-PBF manufactured parts.


Author(s):  
Rajkeerthi E ◽  
Hariharan P

Abstract Surface integrity of micro components is a major concern particularly in manufacturing industries as most geometry of the products must meet out necessary surface quality requirements. Advanced machining process like electrochemical micro machining possess the capabilities to machine micro parts with best surface properties exempting them from secondary operations. In this research work, different electrolytes have been employed for producing micro holes in A286 super alloy material to achieve the best surface quality and the measurement of surface roughness and surface integrity to evaluate the machined surface is carried out. The machined micro hole provides detailed information on the geometrical features. A study of parametric analysis meant for controlling surface roughness and improvement of surface integrity has been made to find out the suitable parameters for machining. The suitability of various electrolytes with their dissolution mechanism and the influence of various electrolytes have been thoroughly studied. Among the utilized electrolytes, EG + NaNO3 electrolyte provided the best results in terms of overcut and average surface roughness.


Author(s):  
Вячеслав Безъязычный ◽  
Vyacheslav Bezyazychnyy ◽  
Максим Басков ◽  
Maksim Baskov

The impact of cutter wear-resistant coatings upon cutting process parameters and characteristics of surface layer quality in the parts worked: residual stresses, a degree and a depth of work hardening of a surface layer, surface roughness is investigated.


2021 ◽  
Vol 338 ◽  
pp. 01005
Author(s):  
Damian Dzienniak ◽  
Jan Pawlik

Additive manufacturing has been gaining popularity and availability year by year, which has resulted in its dynamic development. The most common 3D printing method as of today, FDM (Fused Deposition Modeling), owing to its peculiarity, does not always guarantee producing objects with low surface roughness. The authors of the present article have taken on the analysis of the impact of FDM printing on the roughness of the filament thus processed. They also investigate the relationship between the roughness of the unprocessed filament (made of polycaprolactam, that is, polyamide 6 or PA6) with admixtures of other materials (carbon fiber, glass fiber) and the surface quality of the manufactured object. The main subject of the analysis is the side surfaces of 3D prints, as it is their quality that is usually directly dependent on many factors connected with the process of the laying of the consecutive layers. The authors check step by step whether there exists a pronounced relationship between the roughness of the original filament material and the roughness of the obtained surface.


Sign in / Sign up

Export Citation Format

Share Document