scholarly journals Isoprene Production from Municipal Wastewater Biosolids by Engineered Archaeon Methanosarcina acetivorans

2021 ◽  
Vol 11 (8) ◽  
pp. 3342
Author(s):  
Sean Carr ◽  
Jared Aldridge ◽  
Nicole R. Buan

Wastewater biosolids are a promising feedstock for production of value-added renewable chemicals. Methane-producing archaea (methanogens) are already used to produce renewable biogas via the anaerobic treatment of wastewater. The ability of methanogens to efficiently convert dissolved organic carbon into methane makes them an appealing potential platform for biorefining using metabolic engineering. We have engineered a strain of the methanogen Methanosarcina acetivorans to produce the volatile hemiterpene isoprene in addition to methane. The engineered strain was adapted to grow in municipal wastewater through cultivation in a synthetic wastewater medium. When introduced to municipal wastewater the engineered methanogens were able to compete with the indigenous microorganisms and produce 0.97 mM of isoprene (65.9 ± 21.3 g per m3 of effluent). The production of isoprene in wastewater appears to be dependent on the quantity of available methanogenic substrate produced during upstream digestion by heterotrophic fermenters. This shows that with minimal adaptation it is possible to drop-in engineered methanogens to existing wastewater environments and attain value-added products in addition to the processing of wastewater. This shows the potential for utilizing methanogens as a platform for low-cost production of renewable materials without expensive feedstocks or the need to build or adapt existing facilities.

Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 887 ◽  
Author(s):  
Agne Katileviciute ◽  
Gediminas Plakys ◽  
Aida Budreviciute ◽  
Kamil Onder ◽  
Samar Damiati ◽  
...  

Recently more consideration has been given to the use of renewable materials and agricultural residues. Wheat production is increasing yearly and correspondingly, the volume of by-products from the wheat process is increasing, as well. It is important to find the use of the residuals for higher value-added products, and not just for the food industry or animal feed purposes as it is happening now. Agricultural residue of the roller milled wheat grain is a wheat bran description. The low-cost of wheat bran and its composition assortment provides a good source of substrate for various enzymes and organic acids production and other biotechnological applications. The main purpose of this review article is to look into recent trends, developments, and applications of wheat bran.


2022 ◽  
Vol 34 (2) ◽  
pp. 453-458
Author(s):  
Lakhvinder Kaur ◽  
Shachi Shah

Fruits and vegetables have the highest wastage rates of 45% of any food. One of the recent research areas is food waste valorization as a potential alternative to the disposal of a wide range of organic waste using microorganisms as one of the strategies known as microbial valorization. Bacterial cellulose is best known microbial valorization product because of its low cost, environmentally friendly nature, renewability, nanoscale dimensions, biocompatibility and extremely high hydrophilicity. Therefore, present study focuses on the isolation, characterization and identification of cellulose producing bacteria from decaying apple waste. Cellulose producers were isolated from decaying apple waste. The bacterial isolates obtained were identified through the morphological biochemical, physiological and molecular identification. The bacterial isolates exhibited potential remediation options to biovalorize decaying fruit waste by producing value added products as well as in safe disposal of waste.


2018 ◽  
Vol 34 (6) ◽  
pp. 2770-2776
Author(s):  
Mohd Zul Helmi Rozaini ◽  
Habibah Hamzah ◽  
Chia Poh Wai ◽  
Mohd Hasmizam Razali ◽  
Uwaisulqarni M. Osman ◽  
...  

Fringescalesardinella or TambanSisik bones have been discovered can be utilized as sunscreen agent in cosmeceuticals. Its flesh is the main ingredient in keropoklekor or fish crackers in Malaysia and the bones contained very high hydroxyapatite (HAp), (Ca10(PO4)6(OH)2) compound which exhibit as UV light absorber. The percentage yields obtained from the hydrothermal extraction consist of 41.2 ± 0.66 % (w/w) of HApwhich was almost half of the dry weight of 100 g samples.The additional of manganeseand ferum,initiated the novel sunscreen materials from hydroxyapatite-Fe and hydroxyapatite-Mn doped (modified bones). The unmodified HAp recorded with SPF 20 and modified HAp-Mn measured with SPF 40. Modified HAp-Fe emulsions were recorded with SPF 50 as the highest SPF value. Therefore, the bones have been characterized using Fourier Transform Infrared Radiation (FTIR)spectroscopy and x-Ray diffraction (XRD).The results obtained clearly indicated that the HAp existence in waste of Fringescalesardinella bones with addition of FeCl2which exhibits high potential as sunscreen compared to manganese and unmodified bones. Thus, the utilization of waste from the fish bones not only produce value-added products from low-cost resources, but also help in reducing pollution to the environment and preserved the global sustainability.


2016 ◽  
Vol 10 (2) ◽  
pp. 239-243 ◽  
Author(s):  
Kosuke Funatani ◽  
◽  
Keiichi Nakamoto ◽  
Anthony Beaucamp ◽  
Yoshimi Takeuchi ◽  
...  

It is important to establish new approaches to create value-added products, such as craftwork or artistic goods, that are different from traditional methods of realizing high-quality and low-cost products. Such a production technology is commonly called “dexterous machining.” This study addresses the creation of artistic products by using soft materials with complicated shapes by employing an aqueous solution of sodium acetate to fix a workpiece and to suppress the deformation. Experimental results show that the use of an aqueous solution of sodium acetate has the potential to realize the “dexterous machining” of soft objects.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Huijuan Shao ◽  
Hongli Zhao ◽  
Jiulong Xie ◽  
Jinqiu Qi ◽  
Todd F. Shupe

Microwave-assisted liquefaction is regarded as a promising thermochemical approach to produce renewable and sustainable chemicals and materials from lignocellulosic biomass. Agricultural and forest residues as sources of lignocellulosic biomass have great potential in this regard. With process optimizations, several biomass types have been subjected to liquefaction in different solvents with various catalysts. The products from recent microwave liquefaction with and without further fractionation have been thoroughly analyzed and used for the synthesis of biomaterials. Renewable chemicals, polyurethane foams with partial use of renewable raw materials, and phenolic resins have been the main products from microwave-liquefied products. Further research on microwave liquefaction mechanisms and scalable production should be enhanced to fully evaluate the economic and environmental benefits. This work presents an overview on achievements using liquefaction in combination with microwave energy to convert lignocellulosic biomass into value-added products and chemicals.


Author(s):  
Eva Donini ◽  
Andrea Firrincieli ◽  
Martina Cappelletti

AbstractRhodococcus spp. strains are widespread in diverse natural and anthropized environments thanks to their high metabolic versatility, biodegradation activities, and unique adaptation capacities to several stress conditions such as the presence of toxic compounds and environmental fluctuations. Additionally, the capability of Rhodococcus spp. strains to produce high value-added products has received considerable attention, mostly in relation to lipid accumulation. In relation with this, several works carried out omic studies and genome comparative analyses to investigate the genetic and genomic basis of these anabolic capacities, frequently in association with the bioconversion of renewable resources and low-cost substrates into triacylglycerols. This review is focused on these omic analyses and the genetic and metabolic approaches used to improve the biosynthetic and bioconversion performance of Rhodococcus. In particular, this review summarizes the works that applied heterologous expression of specific genes and adaptive laboratory evolution approaches to manipulate anabolic performance. Furthermore, recent molecular toolkits for targeted genome editing as well as genome-based metabolic models are described here as novel and promising strategies for genome-scaled rational design of Rhodococcus cells for efficient biosynthetic processes application.


2021 ◽  
Vol 13 (SI) ◽  
pp. 194-197
Author(s):  
Farhat Sultana ◽  
Vijayalakshmi ◽  
Geetha ◽  
Mini

Protein-energy malnutrition is one of the major public health problems in India affecting children under 5 years of age. The prevalence of underweight in children under 5 is 42.5% in India, being the highest globally. The need for low-cost supplemental food is vital under such conditions. This study aims to develop low cost and protein-rich value-added products from Tamarind seed flour. The incorporation of Tamarind seed flour (50%) in the development of cookies exhibited a significant level of increase in protein in cookies. The protein content of Control cookies was 5.65% and Tamarind seed flour incorporated cookies was 11.26%. This study depicted that Tamarind seed flour can be used as the replacement of conventionally used cereal flours to develop functional foods to curb protein-energy malnutrition.  


2021 ◽  
Vol 3 ◽  
Author(s):  
Vasanth Kumar Vaithyanathan ◽  
Hubert Cabana

Biosolids (BS) are organic dry matter produced from wastewater treatment plants (WWTPs). The current yearly worldwide production of BS is estimated to be around 100–125 million tons and is expected to continuously increase to around 150–200 million tons by 2025. Wastewater treatment industries across the globe strive to achieve a green and sustainable manufacturing base for the management of enormous amounts of municipal BS, which are rich in nutrients and organic dry matter along with contaminants. The management of these organic-rich wastes through environmentally friendly recovery technologies is a major challenge. The need to improve waste biomass disposal by biological development and develop more economically viable processes has led to a focus on the transformation of waste resources into value-added products (VAP). This paper assesses the leading disposal methods (based on volume and contaminant reduction) and reviews the state of biotechnological processes for VAP recovery from municipal wastewater sludge (untreated solid waste residual) and BS (stabilized solid waste which meets criteria for its use in land). A review of the anaerobic and aerobic digestion processes is presented to provide a holistic overview of this growing research field. Furthermore, the paper also sheds light on the pollutant reduction and resource recovery approaches for enzymes, bioflocculants, bioplastics, biopesticides, and biogas as a mean to represent BS as a potential opportunity for WWTPs. However, only a few technologies have been implemented for VAP resource recovery and a shift from WWTPs to waste resource recovery facilities is still far from being achieved.


Sign in / Sign up

Export Citation Format

Share Document