scholarly journals Subtitling 3D VR Content with Limited 6DoF: Presentation Modes and Guiding Methods

2021 ◽  
Vol 11 (16) ◽  
pp. 7472
Author(s):  
Mario Montagud ◽  
Cristian Hurtado ◽  
Juan Antonio De Rus ◽  
Sergi Fernández

All multimedia services must be accessible. Accessibility for multimedia content is typically provided by means of access services, of which subtitling is likely the most widespread approach. To date, numerous recommendations and solutions for subtitling classical 2D audiovisual services have been proposed. Similarly, recent efforts have been devoted to devising adequate subtitling solutions for VR360 video content. This paper, for the first time, extends the existing approaches to address the challenges remaining for efficiently subtitling 3D Virtual Reality (VR) content by exploring two key requirements: presentation modes and guiding methods. By leveraging insights from earlier work on VR360 content, this paper proposes novel presentation modes and guiding methods, to not only provide the freedom to explore omnidirectional scenes, but also to address the additional specificities of 3D VR compared to VR360 content: depth, 6 Degrees of Freedom (6DoF), and viewing perspectives. The obtained results prove that always-visible subtitles and a novel proposed comic-style presentation mode are significantly more appropriate than state-of-the-art fixed-positioned subtitles, particularly in terms of immersion, ease and comfort of reading, and identification of speakers, when applied to professional pieces of content with limited displacement of speakers and limited 6DoF (i.e., users are not expected to navigate around the virtual environment). Similarly, even in such limited movement scenarios, the results show that the use of indicators (arrows), as a guiding method, is well received. Overall, the paper provides relevant insights and paves the way for efficiently subtitling 3D VR content.

Author(s):  
Mario Montagud Climent ◽  
Cristian Hurtado ◽  
Juan Antonio De Rus Arance ◽  
Sergi Fernández

Every (multimedia) service needs to be accessible. Accessibility for multimedia content is typically provided by means of access services, of which subtitling is likely the most widespread one. Up to date, many recommendations and solutions for subtitling classical 2D audiovisual services are available. Likewise, recent efforts have been devoted to devising adequate subtitling solutions for VR360 video content. This paper, for the first time, goes a step beyond, by exploring two key requirements to fulfill remaining challenges towards efficiently subtitling 3D Virtual Reality (VR) content: presentation modes, and guiding methods. By leveraging insights from earlier work on VR360 content, the paper proposes novel presentation modes and guiding methods to not only deal with the freedom to explore the omnidirectional scenes, but also with additional specificities of 3D VR compared to VR360 content: depth, 6 Degrees of Freedom (6DoF), and viewing perspectives. The obtained results prove that always-visible and a novel proposed comic-style presentation mode are far more appropriate than state-of-the-art fixed-positioned subtitles, mainly in terms of immersion, ease and comfort of reading, and identification of speakers, when applied to professional pieces of content with limited displacement of speakers and with limited 6DoF (i.e. users are not expected to largely navigate around the virtual environment). Likewise, even in such limited movement scenarios, the results show that the use of indicators (arrows), as guiding methods, is well received. Overall, the paper provides relevant insights and paves the way toward efficiently subtitling 3D VR content.


2020 ◽  
Vol 63 (1) ◽  
pp. 75-90
Author(s):  
M. Appolloni ◽  
S. Fransen ◽  
H. Fischer ◽  
M. Remedia

Abstract The HYDRA facility is a very large 6-Degrees-of-Freedom (DoF) hydraulic shaker located in the European Space Research and Technology Centre of ESA in The Netherlands. It has been recently used as test platform to perform a number of innovative, 6-DoF experimental vibration runs with the aim of assessing more flight-representative ways to dynamically qualify a spacecraft, hence reducing the level of conservatism. This paper focuses on the methodology behind the definition of the injected profiles computed by launcher/spacecraft coupled loads analysis, the performance achieved by HYDRA and its state-of-the-art MIMO control system, how the experimental data compare to the simulation ones, and aims also at defining success criteria for 6-DoF transient testing.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Felix Bernauer ◽  
Raphael F. Garcia ◽  
Naomi Murdoch ◽  
Veronique Dehant ◽  
David Sollberger ◽  
...  

AbstractA 6 degrees-of-freedom (6DoF) sensor, measuring three components of translational acceleration and three components of rotation rate, provides the full history of motion it is exposed to. In Earth sciences 6DoF sensors have shown great potential in exploring the interior of our planet and its seismic sources. In space sciences, apart from navigation, 6DoF sensors are, up to now, only rarely used to answer scientific questions. As a first step of establishing 6DoF motion sensing deeper into space sciences, this article describes novel scientific approaches based on 6DoF motion sensing with substantial potential for constraining the interior structure of planetary objects and asteroids. Therefore we estimate 6DoF-signal levels that originate from lander–surface interactions during landing and touchdown, from a body’s rotational dynamics as well as from seismic ground motions. We discuss these signals for an exemplary set of target bodies including Dimorphos, Phobos, Europa, the Earth’s Moon and Mars and compare those to self-noise levels of state-of-the-art sensors.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yijie Shen ◽  
Isaac Nape ◽  
Xilin Yang ◽  
Xing Fu ◽  
Mali Gong ◽  
...  

AbstractVector beams, non-separable in spatial mode and polarisation, have emerged as enabling tools in many diverse applications, from communication to imaging. This applicability has been achieved by sophisticated laser designs controlling the spin and orbital angular momentum, but so far is restricted to only two-dimensional states. Here we demonstrate the first vectorially structured light created and fully controlled in eight dimensions, a new state-of-the-art. We externally modulate our beam to control, for the first time, the complete set of classical Greenberger–Horne–Zeilinger (GHZ) states in paraxial structured light beams, in analogy with high-dimensional multi-partite quantum entangled states, and introduce a new tomography method to verify their fidelity. Our complete theoretical framework reveals a rich parameter space for further extending the dimensionality and degrees of freedom, opening new pathways for vectorially structured light in the classical and quantum regimes.


Author(s):  
Sara Fucini ◽  
Sergio Scopetta ◽  
Michele Viviani

An interesting breakthrough in understanding the elusive inner content of nuclear systems in terms of partonic degrees of freedom is represented by deeply virtual Compton scattering processes. In such a way, tomographic view of nuclei and bound nucleons in coordinate space could be achieved for the first time. Moreover, nowadays experimental results for such a process considering ^44He targets recently released at Jefferson Lab are available. In this talk, the recent results of our rigorous Impulse Approximation for DVCS off ^44He, in terms of state-of-the-art models of the nuclear spectral function and of the parton structure of the bound proton, able to explain present data, has been shown.


2020 ◽  
Vol 63 (4) ◽  
pp. 931-947
Author(s):  
Teresa L. D. Hardy ◽  
Carol A. Boliek ◽  
Daniel Aalto ◽  
Justin Lewicke ◽  
Kristopher Wells ◽  
...  

Purpose The purpose of this study was twofold: (a) to identify a set of communication-based predictors (including both acoustic and gestural variables) of masculinity–femininity ratings and (b) to explore differences in ratings between audio and audiovisual presentation modes for transgender and cisgender communicators. Method The voices and gestures of a group of cisgender men and women ( n = 10 of each) and transgender women ( n = 20) communicators were recorded while they recounted the story of a cartoon using acoustic and motion capture recording systems. A total of 17 acoustic and gestural variables were measured from these recordings. A group of observers ( n = 20) rated each communicator's masculinity–femininity based on 30- to 45-s samples of the cartoon description presented in three modes: audio, visual, and audio visual. Visual and audiovisual stimuli contained point light displays standardized for size. Ratings were made using a direct magnitude estimation scale without modulus. Communication-based predictors of masculinity–femininity ratings were identified using multiple regression, and analysis of variance was used to determine the effect of presentation mode on perceptual ratings. Results Fundamental frequency, average vowel formant, and sound pressure level were identified as significant predictors of masculinity–femininity ratings for these communicators. Communicators were rated significantly more feminine in the audio than the audiovisual mode and unreliably in the visual-only mode. Conclusions Both study purposes were met. Results support continued emphasis on fundamental frequency and vocal tract resonance in voice and communication modification training with transgender individuals and provide evidence for the potential benefit of modifying sound pressure level, especially when a masculine presentation is desired.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 87
Author(s):  
Ali Umut Şen ◽  
Helena Pereira

In recent years, there has been a surge of interest in char production from lignocellulosic biomass due to the fact of char’s interesting technological properties. Global char production in 2019 reached 53.6 million tons. Barks are among the most important and understudied lignocellulosic feedstocks that have a large potential for exploitation, given bark global production which is estimated to be as high as 400 million cubic meters per year. Chars can be produced from barks; however, in order to obtain the desired char yields and for simulation of the pyrolysis process, it is important to understand the differences between barks and woods and other lignocellulosic materials in addition to selecting a proper thermochemical method for bark-based char production. In this state-of-the-art review, after analyzing the main char production methods, barks were characterized for their chemical composition and compared with other important lignocellulosic materials. Following these steps, previous bark-based char production studies were analyzed, and different barks and process types were evaluated for the first time to guide future char production process designs based on bark feedstock. The dry and wet pyrolysis and gasification results of barks revealed that application of different particle sizes, heating rates, and solid residence times resulted in highly variable char yields between the temperature range of 220 °C and 600 °C. Bark-based char production should be primarily performed via a slow pyrolysis route, considering the superior surface properties of slow pyrolysis chars.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1977
Author(s):  
Ricardo Oliveira ◽  
Liliana M. Sousa ◽  
Ana M. Rocha ◽  
Rogério Nogueira ◽  
Lúcia Bilro

In this work, we demonstrate for the first time the capability to inscribe long-period gratings (LPGs) with UV radiation using simple and low cost amplitude masks fabricated with a consumer grade 3D printer. The spectrum obtained for a grating with 690 µm period and 38 mm length presented good quality, showing sharp resonances (i.e., 3 dB bandwidth < 3 nm), low out-of-band loss (~0.2 dB), and dip losses up to 18 dB. Furthermore, the capability to select the resonance wavelength has been demonstrated using different amplitude mask periods. The customization of the masks makes it possible to fabricate gratings with complex structures. Additionally, the simplicity in 3D printing an amplitude mask solves the problem of the lack of amplitude masks on the market and avoids the use of high resolution motorized stages, as is the case of the point-by-point technique. Finally, the 3D printed masks were also used to induce LPGs using the mechanical pressing method. Due to the better resolution of these masks compared to ones described on the state of the art, we were able to induce gratings with higher quality, such as low out-of-band loss (0.6 dB), reduced spectral ripples, and narrow bandwidths (~3 nm).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shreeya Sriram ◽  
Shitij Avlani ◽  
Matthew P. Ward ◽  
Shreyas Sen

AbstractContinuous multi-channel monitoring of biopotential signals is vital in understanding the body as a whole, facilitating accurate models and predictions in neural research. The current state of the art in wireless technologies for untethered biopotential recordings rely on radiative electromagnetic (EM) fields. In such transmissions, only a small fraction of this energy is received since the EM fields are widely radiated resulting in lossy inefficient systems. Using the body as a communication medium (similar to a ’wire’) allows for the containment of the energy within the body, yielding order(s) of magnitude lower energy than radiative EM communication. In this work, we introduce Animal Body Communication (ABC), which utilizes the concept of using the body as a medium into the domain of untethered animal biopotential recording. This work, for the first time, develops the theory and models for animal body communication circuitry and channel loss. Using this theoretical model, a sub-inch$$^3$$ 3 [1″ × 1″ × 0.4″], custom-designed sensor node is built using off the shelf components which is capable of sensing and transmitting biopotential signals, through the body of the rat at significantly lower powers compared to traditional wireless transmissions. In-vivo experimental analysis proves that ABC successfully transmits acquired electrocardiogram (EKG) signals through the body with correlation $$>99\%$$ > 99 % when compared to traditional wireless communication modalities, with a 50$$\times$$ × reduction in power consumption.


Data ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 87
Author(s):  
Sara Ferreira ◽  
Mário Antunes ◽  
Manuel E. Correia

Deepfake and manipulated digital photos and videos are being increasingly used in a myriad of cybercrimes. Ransomware, the dissemination of fake news, and digital kidnapping-related crimes are the most recurrent, in which tampered multimedia content has been the primordial disseminating vehicle. Digital forensic analysis tools are being widely used by criminal investigations to automate the identification of digital evidence in seized electronic equipment. The number of files to be processed and the complexity of the crimes under analysis have highlighted the need to employ efficient digital forensics techniques grounded on state-of-the-art technologies. Machine Learning (ML) researchers have been challenged to apply techniques and methods to improve the automatic detection of manipulated multimedia content. However, the implementation of such methods have not yet been massively incorporated into digital forensic tools, mostly due to the lack of realistic and well-structured datasets of photos and videos. The diversity and richness of the datasets are crucial to benchmark the ML models and to evaluate their appropriateness to be applied in real-world digital forensics applications. An example is the development of third-party modules for the widely used Autopsy digital forensic application. This paper presents a dataset obtained by extracting a set of simple features from genuine and manipulated photos and videos, which are part of state-of-the-art existing datasets. The resulting dataset is balanced, and each entry comprises a label and a vector of numeric values corresponding to the features extracted through a Discrete Fourier Transform (DFT). The dataset is available in a GitHub repository, and the total amount of photos and video frames is 40,588 and 12,400, respectively. The dataset was validated and benchmarked with deep learning Convolutional Neural Networks (CNN) and Support Vector Machines (SVM) methods; however, a plethora of other existing ones can be applied. Generically, the results show a better F1-score for CNN when comparing with SVM, both for photos and videos processing. CNN achieved an F1-score of 0.9968 and 0.8415 for photos and videos, respectively. Regarding SVM, the results obtained with 5-fold cross-validation are 0.9953 and 0.7955, respectively, for photos and videos processing. A set of methods written in Python is available for the researchers, namely to preprocess and extract the features from the original photos and videos files and to build the training and testing sets. Additional methods are also available to convert the original PKL files into CSV and TXT, which gives more flexibility for the ML researchers to use the dataset on existing ML frameworks and tools.


Sign in / Sign up

Export Citation Format

Share Document