scholarly journals Pro-Pre and Postbiotic in Celiac Disease

2021 ◽  
Vol 11 (17) ◽  
pp. 8185
Author(s):  
Mariangela Conte ◽  
Monia Porpora ◽  
Federica Nigro ◽  
Roberto Nigro ◽  
Andrea Luigi Budelli ◽  
...  

Celiac Disease (CD) is an autoimmune disease characterized by inflammation of the intestinal mucosa due to an immune response to wheat gliadins. It presents in subjects with genetic susceptibility (HLA-DQ2/DQ8 positivity and non-HLA genes) and under the influence of environmental triggers, such as viral infections and intestinal microbiota dysbiosis. The only treatment currently available in CD is a gluten-free diet for life. Despite this, the intestinal dysbiosis that is recorded in celiac subjects persists, even with adherence to dietary therapy. In this review, we have analyzed the literature over the past several decades, which have focused on the use of pro-, pre- and post-biotics in vitro and in vivo in CD. The study of probiotics and their products in CD could be interesting for observing their various effects on several different pathways, including anti-inflammatory properties.

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3566
Author(s):  
Federica Gaiani ◽  
Sara Graziano ◽  
Fatma Boukid ◽  
Barbara Prandi ◽  
Lorena Bottarelli ◽  
...  

The reasons behind the increasing prevalence of celiac disease (CD) worldwide are still not fully understood. This study adopted a multilevel approach (in vitro, ex vivo, in vivo) to assess the potential of gluten from different wheat varieties in triggering CD. Peptides triggering CD were identified and quantified in mixtures generated from simulated gastrointestinal digestion of wheat varieties (n = 82). Multivariate statistics enabled the discrimination of varieties generating low impact on CD (e.g., Saragolla) and high impact (e.g., Cappelli). Enrolled subjects (n = 46) were: 19 healthy subjects included in the control group; 27 celiac patients enrolled for the in vivo phase. Celiacs were divided into a gluten-free diet group (CD-GFD), and a GFD with Saragolla-based pasta group (CD-Sar). The diet was followed for 3 months. Data were compared between CD-Sar and CD-GFD before and after the experimental diet, demonstrating a limited ability of Saragolla to trigger immunity, although not comparable to a GFD. Ex vivo studies showed that Saragolla and Cappelli activated immune responses, although with great variability among patients. The diverse potential of durum wheat varieties in triggering CD immune response was demonstrated. Saragolla is not indicated for celiacs, yet it has a limited potential to trigger adverse immune response.


2015 ◽  
Vol 33 (2) ◽  
pp. 260-263 ◽  
Author(s):  
Detlef Schuppan ◽  
Victor Zevallos

While the central role of an adaptive, T cell-mediated immune response to certain gluten peptides in celiac disease is well established, the innate immune response to wheat proteins remains less well defined. We identified wheat amylase trypsin inhibitors (ATIs), but not gluten, as major stimulators of innate immune cells (dendritic cells > macrophages > monocytes), while intestinal epithelial cells were nonresponsive. ATIs bind to and activate the CD14-MD2 toll-like receptor 4 (TLR4) complex. This activation occurs both in vitro and in vivo after oral ingestion of purified ATIs or gluten, which is usually enriched in ATIs. Wheat ATIs represent a family of up to 17 proteins with molecular weights of around 15 kDa and a variable primary but conserved secondary structure characterized by 5 intrachain disulfide bonds and alpha helices. They mostly form di- and tetramers that appear to equally activate TLR4. Relevant biological activity is confined to ATIs in gluten-containing cereals, while gluten-free cereals display no or minimal activities. ATIs represent up to 4% of total wheat protein and are highly resistant to intestinal proteases. In line with their dose-dependent function as co-stimulatory molecules in adaptive immunity of celiac disease, they appear to play a role in promoting other immune-mediated diseases within and outside the GI tract. Thus, ATIs may be prime candidates of severe forms of non-celiac gluten (wheat) sensitivity.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1038-1038
Author(s):  
Ethan G Aguilar ◽  
Can M Sungur ◽  
Anthony E Zamora ◽  
William J Murphy

Abstract Natural killer (NK) cells are lymphocytes of the innate immune system and are classically associated with cytotoxic responses to both virally infected as well as neoplastic cells. Activation of NK cells to exhibit their cytotoxicity is dependent on signaling through a number of activating and inhibitory receptors. In mice, one such family of inhibitory receptors is the C-type lectin-like Ly49 family. In humans, the killer immunoglobulin-like receptors (KIRs) serve as the primary family of inhibitory receptors and are functional analogs of the Ly49s. Despite markedly different structures, the Ly49s and KIRs display similar binding capabilities and bind primarily to distinct MHC class I haplotypes, which plays an important role in regulating NK cell function. NK cells that express inhibitory receptors that are specific for the MHC class I haplotype of the individual are termed “licensed” and have been shown to have increased functionality in terms of cytotoxicity and cytokine production. In contrast, NK cells that express inhibitory receptors that are unable to bind to the MHC class I haplotype of the individual are termed “unlicensed” and have been shown to be hyporesponsive. We have recently reported on the role of NK licensing on the immune response to viral infections such as MCMV. In addition, we have previously described how regulatory T cells can regulate NK cell activity in vivo. However, there are limited data examining the interaction and regulation between the different NK subsets based on differences in licensing. We hypothesized that different NK cell subsets, based on licensing, can regulate each other in the context of anti-tumor and anti-viral responses. Here we first provide in vitro data providing evidence to support the hypothesis of NK-NK regulation based on licensing. In vitro killing assays using MCMV infected fibroblasts, or C1498 (murine acute myeloid leukemia) cells as targets and using different combinations of murine NK Ly49 subsets as effectors were used to assess this NK-NK regulation. To further test our hypothesis, in vivo experiments were also performed using a mouse leukemia model as well as an MCMV model. Mice were injected with C1498 cells and then given hematopoietic stem cell transplantation (HSCT). The mice were then depleted of all NK cells or either licensed or unlicensed subsets by antibody depletion once a week, and monitored for survival. Mice that were depleted of the unlicensed population survived significantly longer compared with the other depleted groups, suggesting a negative regulation of the anti-tumor response by the unlicensed population resulting in greater tumor burden and death in the presence of the unlicensed population. This negative regulation by the unlicensed population is further supported by another experiment where mice were infected with MCMC following total NK or subset depletion and monitored for ten days throughout the course of the immune response to MCMV. Mice that were depleted of their unlicensed population displayed a significantly larger expansion of the licensed population of NK cells, without reciprocal greater expansion of the unlicensed population upon licensed NK cell depletion. More specifically, depletion of the unlicensed population resulted in an expansion of the Ly49H+NK cells which have previously been shown to be the primary effector population during MCMV infection. Thus, the unlicensed NK cells are playing a role in down-regulating the anti-viral response by limiting the expansion of the effector licensed population. Our data highlight a role for the murine NK subsets to negatively regulate the immune response of the effector licensed NK population in the context of anti-tumor and anti-viral responses. This new insight into the regulatory role of NK cells may have clinical benefit for patients receiving bone marrow transplants during cancer treatment to enhance graft vs. tumor effects, and to combat opportunistic viral infections that may manifest in the immune compromised environment of the BMT patient. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
S. Viganò ◽  
M. Perreau ◽  
G. Pantaleo ◽  
A. Harari

The immune system has evolved to allow robust responses against pathogens while avoiding autoimmunity. This is notably enabled by stimulatory and inhibitory signals which contribute to the regulation of immune responses. In the presence of a pathogen, a specific and effective immune response must be induced and this leads to antigen-specific T-cell proliferation, cytokines production, and induction of T-cell differentiation toward an effector phenotype. After clearance or control of the pathogen, the effector immune response must be terminated in order to avoid tissue damage and chronic inflammation and this process involves coinhibitory molecules. When the immune system fails to eliminate or control the pathogen, continuous stimulation of T cells prevents the full contraction and leads to the functional exhaustion of effector T cells. Several evidences bothin vitroandin vivosuggest that this anergic state can be reverted by blocking the interactions between coinhibitory molecules and their ligands. The potential to revert exhausted or inactivated T-cell responses following selective blocking of their function made these markers interesting targets for therapeutic interventions in patients with persistent viral infections or cancer.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 906
Author(s):  
Francesca Colombo ◽  
Chiara Di Lorenzo ◽  
Simone Biella ◽  
Corinne Bani ◽  
Patrizia Restani

Celiac disease is an autoimmune disorder that occurs in genetically predisposed individuals after consuming prolamins from some cereals. Although the products available for celiac subjects have increased significantly in quality and quantity over the last few decades, research still focuses on identifying new ingredients to improve the nutritional, sensorial and functional qualities of gluten-free products. In terms of toxicity for people with celiac disease, there is a wide variability between ancient and modern grains. The most contradictory results are related to the role of oats in the gluten-free diet. In order to clarify the role of minor cereals (such as oat) and ancient grains in the diets of celiac patients, this review discusses recent in vitro and in vivo studies performed on those cereals for which the toxicity for celiac subjects is still controversial. According to in vivo studies, selected oat varieties could be tolerated by celiac patients. On the other hands, although some wheat-ancient grains (Triticum monococcum, Triticum aestivum ssp. spelta and Kamut®) showed a reduced in vitro toxicity, to date, these grains are still considered toxic for celiac patients. Contradictory results underline the importance of studying the safety of “unusual” cereals in more detail.


2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary Jo Rademacher ◽  
Anahi Cruz ◽  
Mary Faber ◽  
Robyn A. A. Oldham ◽  
Dandan Wang ◽  
...  

AbstractInterleukin-12 (IL-12) is an inflammatory cytokine that has demonstrated efficacy for cancer immunotherapy, but systemic administration has detrimental toxicities. Lentiviral transduction eliciting IL-12-producing human sarcoma for autologous reintroduction provides localized delivery for both innate and adaptive immune response augmentation. Sarcoma cell lines and primary human sarcoma samples were transduced with recombinant lentivirus engineering expression of human IL-12 (hu-IL-12). IL-12 expressing sarcomas were assessed in vitro and in vivo following implantation into humanized NSG and transgenic human IL-15 expressing (NSG.Tg(Hu-IL-15)) murine models. Lentiviral transduction (LV/hu-IL-12) of human osteosarcoma, Ewing sarcoma and rhabdomyosarcoma cell lines, as well as low-passage primary human sarcomas, engendered high-level expression of hu-IL-12. Hu-IL-12 demonstrated functional viability, eliciting specific NK cell-mediated interferon-γ (IFN-γ) release and cytotoxic growth restriction of spheroids in vitro. In orthotopic xenograft murine models, the LV/hu-IL-12 transduced human sarcoma produced detectable IL-12 and elicited an IFN-γ inflammatory immune response specific to mature human NK reconstitution in the NSG.Tg(Hu-IL-15) model while restricting tumor growth. We conclude that LV/hu-IL-12 transduction of sarcoma elicits a specific immune reaction and the humanized NSG.Tg(Hu-IL-15) xenograft, with mature human NK cells, can define in vivo anti-tumor effects and systemic toxicities. IL-12 immunomodulation through autologous tumor transduction and reintroduction merits exploration for sarcoma treatment.


Lab on a Chip ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 795-820
Author(s):  
Andrea Spanu ◽  
Laura Martines ◽  
Annalisa Bonfiglio

This review focuses on the applications of organic transistors in cellular interfacing. It offers a comprehensive retrospective of the past, an overview of the latest innovations, and a glance on the future perspectives of this fast-evolving field.


Author(s):  
Bogna Grygiel-Górniak

AbstractThe majority of the medical fraternity is continuously involved in finding new therapeutic schemes, including antimalarial medications (AMDs), which can be useful in combating the 2019-nCoV: coronavirus disease (COVID-19). For many decades, AMDs have been widely used in the treatment of malaria and various other anti-inflammatory diseases, particularly to treat autoimmune disorders of the connective tissue. The review comprises in vitro and in vivo studies, original studies, clinical trials, and consensus reports for the analysis, which were available in medical databases (e.g., PubMed). This manuscript summarizes the current knowledge about chloroquine (CQ)/hydroxychloroquine (HCQ) and shows the difference between their use, activity, recommendation, doses, and adverse effects on two groups of patients: those with rheumatic and viral diseases (including COVID-19). In the case of connective tissue disorders, AMDs are prescribed for a prolonged duration in small doses, and their effect is observed after few weeks, whereas in the case of viral infections, they are prescribed in larger doses for a short duration to achieve a quick saturation effect. In rheumatic diseases, AMDs are well tolerated, and their side effects are rare. However, in some viral diseases, the effect of AMDs is questionable or not so noticeable as suggested during the initial prognosis. They are mainly used as an additive therapy to antiviral drugs, but recent studies have shown that AMDs can diminish the efficacy of some antiviral drugs and may cause respiratory, kidney, liver, and cardiac complications.


Sign in / Sign up

Export Citation Format

Share Document