scholarly journals Understanding Camellia sinensis using Omics Technologies along with Endophytic Bacteria and Environmental Roles on Metabolism: A Review

2019 ◽  
Vol 9 (2) ◽  
pp. 281 ◽  
Author(s):  
Phumudzo Tshikhudo ◽  
Khayalethu Ntushelo ◽  
Fhatuwani Mudau ◽  
Bahare Salehi ◽  
Mehdi Sharifi-Rad ◽  
...  

Camellia sinensis is the most consumed beverage worldwide. It contains a wide variety of secondary metabolites, such as alkaloids, saponins, tannins, catechins, and polyphenols, generated through a condensation reaction of cinnamic acid with three malonyl-CoA groups. In addition to the metabolic processes occurring within this plant, there are also some plant-associated bacterial endophytes. These bacteria reside in the living tissues of the host plants without causing any harmful effect to them, thereby stimulating secondary metabolite production with a diverse range of biological effects. Omics technologies reveal understanding of the biological phenomena of transcriptomics, proteomics, and metabolomics. In this sense, the present review aims to provide a comprehensive review of various methods used to identify distinct plant compounds, namely transcriptomic, proteomic, and metabolomic analysis. The role of endophytic bacteria in C. sinensis metabolism, and C. sinensis antioxidant and antimicrobial effects, are also carefully highlighted.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiangbin Wei ◽  
Qiwu Shi ◽  
Lidan Xiong ◽  
Guang Xin ◽  
Tao Yi ◽  
...  

AbstractThe experiment of inertial confinement fusion by the “ShengGuang (SG)-III” prototype laser facility is a transient and extreme reaction process within several nanoseconds, which could form a very complicated and intense electromagnetic field around the target chamber of the facility and may lead to harmful effect on people around. In particular, the biological effects arising from such specific environment field could hardly be ignored and have never been investigated yet, and thus, we reported on the investigation of the biological effects of radiation on HaCat cells and PC12 cells to preliminarily assess the biological safety of the target range of the "SG-III" prototype laser facility. The viability revealed that the damage of cells was dose-dependent. Then we compared the transcriptomes of exposed and unexposed PC12 cells by RNA-Seq analysis based on Illumina Novaseq 6000 platform and found that most significantly differentially expressed genes with corresponding Gene Ontology terms and pathways were strongly involved in proliferation, transformation, necrosis, inflammation response, apoptosis and DNA damage. Furthermore, we find increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that pathways or mechanisms regarding DNA damage repair was are quickly activated. It was found that "SG-III" prototype radiation could induce DNA damage and promote apoptotic necrosis.


2020 ◽  
Vol 90 (11) ◽  
pp. 2397-2412
Author(s):  
Iman Valizadeh ◽  
Oliver Weeger

Abstract The objective of this contribution is the numerical investigation of growth-induced instabilities of an elastic film on a microstructured soft substrate. A nonlinear multiscale simulation framework is developed based on the FE2 method, and numerical results are compared against simplified analytical approaches, which are also derived. Living tissues like brain, skin, and airways are often bilayered structures, consisting of a growing film on a substrate. Their modeling is of particular interest in understanding biological phenomena such as brain development and dysfunction. While in similar studies the substrate is assumed as a homogeneous material, this contribution considers the heterogeneity of the substrate and studies the effect of microstructure on the instabilities of a growing film. The computational approach is based on the mechanical modeling of finite deformation growth using a multiplicative decomposition of the deformation gradient into elastic and growth parts. Within the nonlinear, concurrent multiscale finite element framework, on the macroscale a nonlinear eigenvalue analysis is utilized to capture the occurrence of instabilities and corresponding folding patterns. The microstructure of the substrate is considered within the large deformation regime, and various unit cell topologies and parameters are studied to investigate the influence of the microstructure of the substrate on the macroscopic instabilities. Furthermore, an analytical approach is developed based on Airy’s stress function and Hashin–Shtrikman bounds. The wavelengths and critical growth factors from the analytical solution are compared with numerical results. In addition, the folding patterns are examined for two-phase microstructures and the influence of the parameters of the unit cell on the folding pattern is studied.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Chu Hsien Lim ◽  
Prameet Kaur ◽  
Emelyne Teo ◽  
Vanessa Yuk Man Lam ◽  
Fangchen Zhu ◽  
...  

The brains of Alzheimer’s disease patients show a decrease in brain mass and a preponderance of extracellular Amyloid-β plaques. These plaques are formed by aggregation of polypeptides that are derived from the Amyloid Precursor Protein (APP). Amyloid-β plaques are thought to play either a direct or an indirect role in disease progression, however the exact role of aggregation and plaque formation in the aetiology of Alzheimer’s disease (AD) is subject to debate as the biological effects of soluble and aggregated Amyloid-β peptides are difficult to separate in vivo. To investigate the consequences of formation of Amyloid-β oligomers in living tissues, we developed a fluorescently tagged, optogenetic Amyloid-β peptide that oligomerizes rapidly in the presence of blue light. We applied this system to the crucial question of how intracellular Amyloid-β oligomers underlie the pathologies of A. We use Drosophila, C. elegans and D. rerio to show that, although both expression and induced oligomerization of Amyloid-β were detrimental to lifespan and healthspan, we were able to separate the metabolic and physical damage caused by light-induced Amyloid-β oligomerization from Amyloid-β expression alone. The physical damage caused by Amyloid-β oligomers also recapitulated the catastrophic tissue loss that is a hallmark of late AD. We show that the lifespan deficit induced by Amyloid-β oligomers was reduced with Li+ treatment. Our results present the first model to separate different aspects of disease progression.


Author(s):  
Blanca Teresa Perez-Maceda ◽  
María Encarnación López-Fernández ◽  
Iván Díaz ◽  
Aaron kavanaugh ◽  
Fabrizio Billi ◽  
...  

Macrophages are cells involved in the primary response to debris derived from wear of implanted CoCr alloys. The biocompatibility of wear particles from a high carbon CoCr alloy produced under polarization in physiological hyaluronic acid (HA) solution was evaluated in J774A.1 mouse macrophages cultures. Polarization was applied to mimic the electrical interactions observed in living tissues. Wear tests were performed in a pin-on-disk tribometer integrating an electrochemical cell in phosphate buffer solution (PBS) and in PBS supplemented with 0.3% HA, physiological synovial fluid concentration, used as lubricant solution. Wear particles produced in 0.3% HA solution showed a higher biocompatibility in J774A.1 macrophages in comparison to those elicited by PBS. A considerable improvement in macrophages biocompatibility in the presence of 0.3 % of HA was further observed by the application of polarization at potentials having current densities typical of injured tissues suggesting that polarization produces an effect on the surface of the metallic material that leads to the production of wear particles that are macrophages biocompatible and less cytotoxic. The results showed the convenience to consider electric interactions together with other particles parameters, as are size and composition, to get a better understanding of the biological effects of the wear products.


2001 ◽  
Vol 114 (23) ◽  
pp. 4143-4151 ◽  
Author(s):  
Fedor Berditchevski

The transmembrane proteins of the tetraspanin superfamily are implicated in a diverse range of biological phenomena, including cell motility, metastasis, cell proliferation and differentiation. The tetraspanins are associated with adhesion receptors of the integrin family and regulate integrin-dependent cell migration. In cells attached to the extracellular matrix, the integrin-tetraspanin adhesion complexes are clustered into a distinct type of adhesion structure at the cell periphery. Various tetraspanins are associated with phosphatidylinositol 4-kinase and protein kinase C isoforms, and they may facilitate assembly of signalling complexes by tethering these enzymes to integrin heterodimers. At the plasma membrane, integrin-tetraspanin signalling complexes are partitioned into specific microdomains proximal to cholesterol-rich lipid rafts. A substantial fraction of tetraspanins colocalise with integrins in various intracellular vesicular compartments. It is proposed that tetraspanins can influence cell migration by one of the following mechanisms: (1) modulation of integrin signalling; (2) compartmentalisation of integrins on the cell surface; or (3) direction of intracellular trafficking and recycling of integrins.


2021 ◽  
Author(s):  
Lan Luo ◽  
Chen Yan ◽  
Naoki Fuchi ◽  
Yukinobu Kodama ◽  
Xu Zhang ◽  
...  

Abstract Background: Radiation-induced heart disease have been reported, but the mechanisms remain unclear. Mesenchymal stem cells (MSCs), also resident in heart are highly susceptible to radiation. We examined the hypothesis that altered secretion of exosomes from MSCs as the triggers of radiation-induced heart disease. Methods: By exposing human placental tissue-derived MSCs to 5 Gy γ-rays, we will then isolate exosomes from the culture medium 48h later and use to evaluate the quantity and quality changes of exosomes from MSCs after radiation exposures. The biological effects of exosomes from irradiated MSCs on HUVEC and H9c2 cells were also examined. Results: Although the amount and size distribution of exosomes did not differ between the non-irradiated and irradiated MSCs, miRNA sequences indicated many up- or down-regulated miRNAs in irradiated MSCs-exosomes. In vitro experiments using HUVEC and H9c2 cells showed that irradiated MSCs-exosomes significantly decreased cell proliferation, but increased cell apoptosis and DNA damage. Moreover, irradiated MSCs-exosomes impaired the tube formation of HUVEC cells and induced calcium overload of H9c2 cells. Conclusions: Exosomes released from irradiated MSCs shows an altered miRNA profiling and harmful effect to damage heart cells, which provides new insight on the mechanism of radiation-related heart disease risks.


1994 ◽  
Vol 72 (7) ◽  
pp. 1645-1655 ◽  
Author(s):  
Robert L. White ◽  
Kevin C. Smith ◽  
Alphonse C. DeMarco

The biosynthesis of 5-hydroxy-4-oxo-L-norvaline (HON) in Streptomyces akiyoshiensis has been investigated using 13C-labelled substrates. Incorporations of 13C label from sodium [1-13C]-, [2-13C]-, and [1,2-13C2]acetate indicated that HON was formed from a four-carbon compound derived from the citric acid cycle and the methyl carbon of acetate. Feeding experiments using DL-[4-13C]- and DL-[2-13C,15N]aspartate demonstrated that aspartate served as the four-carbon precursor to HON. Both enantiomers of aspartate were metabolized by S. akiyoshiensis, but the D isomer was consumed at a slower rate. The distribution of 13C label in the intracellular L-glutamic acid isolated in these feeding experiments is consistent with the operation of the citric acid cycle in S. akiyoshiensis. A biosynthetic hypothesis that involves a condensation reaction between acetyl or malonyl CoA and the β-carboxyl group of aspartate, and subsequent oxidative decarboxylation, is proposed to account for the incorporation results. An analogous condensation step has been proposed for the biosynthesis of other natural products, including the carbapenem antibiotics. DL-[2-13C,15N]Aspartate was synthesized from [2-13C]diethylmalonate and potassium [15N]phthalimide via diethyl [2-13C,15N]phthalimidomalonate.


2014 ◽  
Vol 17 (1) ◽  
pp. 136 ◽  
Author(s):  
Christopher Peter Phenix ◽  
Melissa Togtema ◽  
Samuel Pichardo ◽  
Ingeborg Zehbe ◽  
Laura Curiel

Ultrasonography is a safe, inexpensive and wide-spread diagnostic tool capable of producing real-time non-invasive images without significant biological effects. However, the propagation of higher energy, intensity and frequency ultrasound waves through living tissues can induce thermal, mechanical and chemical effects useful for a variety of therapeutic applications. With the recent development of clinically approved High Intensity Focused Ultrasound (HIFU) systems, therapeutic ultrasound is now a medical reality.  Indeed, HIFU has been used for the thermal ablation of pathological lesions; localized, minimally invasive ultrasound-mediated drug delivery through the transient formation of pores on cell membranes; the temporary disruption of skin and the blood brain barrier; the ultrasound induced break-down of blood clots; and the targeted release of drugs using ultrasound and temperature sensitive drug carriers. This review seeks to engage the pharmaceutical research community by providing an overview on the biological effects of ultrasound as well as highlighting important therapeutic applications, current deficiencies and future directions.This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2015 ◽  
Vol 174 ◽  
pp. 452-459 ◽  
Author(s):  
Jang-Eun Lee ◽  
Bum-Jin Lee ◽  
Jin-Oh Chung ◽  
Hak-Nam Kim ◽  
Eun-Hee Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document