scholarly journals Assessing the Impact of Ozone and Particulate Matter on Mortality Rate from Respiratory Disease in Seoul, Korea

Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 685 ◽  
Author(s):  
Park

The evidence linking ozone and particulate matter with adverse health impacts is increasing. The goal of this study was to assess the impact of air pollution on the mortality rate from respiratory disease in Seoul, Korea, between 2008 and 2017. The analysis was conducted using a decision tree model in two ways: using 24-hour average concentrations and using 1-hour maximum values to compare any health impacts from the different times of exposure to pollution. Results show that in spring an elevated level of ozone is one of the most important factors, but in summer temperature has a greater impact than air pollution. Nitrogen dioxide is one of the most important factors in fall, while high levels of particles less than 2.5 μm (PM2.5) and 10 μm in size (PM10) and cooler temperatures are key factors in winter. We checked the accuracy of our results through a 10-fold cross validation method. Error rates using 24-hour average and 1-hour maximum concentrations were in the ranges of 24.9%–42% and 27.6%–42%, respectively, indicating that 24-hour average concentrations are slightly more directly related with mortality rate. These results could be useful for policy makers in determining the temporal scale of predicted pollutant concentrations for an air quality warning system to help minimize the adverse impacts of air pollution.

2020 ◽  
Vol 5 (4) ◽  
pp. 137-140
Author(s):  
Hina Islam ◽  
Irfan Sharif Shakoori ◽  
Fauzia Aslam ◽  
Gohar Ashraf ◽  
Hammad Akram

AbstractAir pollution is a result of natural phenomena or human activities that can cause the release of harmful substances in the environment, leading to adverse health outcomes among living beings. Pollution is associated with adverse health impacts on multiple organ systems among humans. While the respiratory and cardiovascular systems are mainly affected, there are other health issues related to the eyes, skin, brain, blood, immunity, behavioral/mental well-being, and reproduction among exposed individuals. Air pollutants can especially have higher health impacts on people at the extremes of their ages (children and elderly) and on those suffering from underlying respiratory and heart issues. Pollutants such as ozone, sulfur dioxide, particulate matter, and nitrogen dioxide have respiratory effects among children and adults and are associated with increased respiratory diseases, asthma exacerbations, and related hospitalizations. Carbon monoxide interferes with transporting oxygen by forming carboxyhemoglobin leading to cardiovascular, neurological, and respiratory problems. Particulate matter is a heterogeneous mixture of tiny particles of varying compositions found in the atmosphere and has a wide variety of severe health effects. Particulate matter emits from combustion, diesel engines, power generation, and wood-burning, and certain industrial activities. Lead is considered neurotoxic and has more severe consequences among children. Here we summarize characteristics of six criteria air pollutants and associated air quality risk assessment parameters known as the Pollutant Standard Index (PSI). The present manuscript also examines the impact of air pollution on human behavior, mental well-being, and neurological health consequences, as air pollution has been associated with cognitive decline, hyperactivity, dementia, anxiety, depression, aggression, and Alzheimer’s disease-related changes. Lastly, we also attempt to look into any relationship between air pollutants and Coronavirus disease (COVID-19) and examine its possible association with a higher COVID-19 incidence, complications, and mortality.


Author(s):  
Wissanupong Kliengchuay ◽  
Aronrag Cooper Meeyai ◽  
Suwalee Worakhunpiset ◽  
Kraichat Tantrakarnapa

Meteorological parameters play an important role in determining the prevalence of ambient particulate matter (PM) in the upper north of Thailand. Mae Hong Son is a province located in this region and which borders Myanmar. This study aimed to determine the relationships between meteorological parameters and ambient concentrations of particulate matter less than 10 µm in diameter (PM10) in Mae Hong Son. Parameters were measured at an air quality monitoring station, and consisted of PM10, carbon monoxide (CO), ozone (O3), and meteorological factors, including temperature, rainfall, pressure, wind speed, wind direction, and relative humidity (RH). Nine years (2009–2017) of pollution and climate data obtained from the Thai Pollution Control Department (PCD) were used for analysis. The results of this study indicate that PM10 is influenced by meteorological parameters; high concentration occurred during the dry season and northeastern monsoon seasons. Maximum concentrations were always observed in March. The PM10 concentrations were significantly related to CO and O3 concentrations and to RH, giving correlation coefficients of 0.73, 0.39, and −0.37, respectively (p-value < 0.001). Additionally, the hourly PM10 concentration fluctuated within each day. In general, it was found that the reporting of daily concentrations might be best suited to public announcements and presentations. Hourly concentrations are recommended for public declarations that might be useful for warning citizens and organizations about air pollution. Our findings could be used to improve the understanding of PM10 concentration patterns in Mae Hong Son and provide information to better air pollution measures and establish a warning system for the province.


Időjárás ◽  
2021 ◽  
Vol 125 (4) ◽  
pp. 625-646
Author(s):  
Zita Ferenczi ◽  
Emese Homolya ◽  
Krisztina Lázár ◽  
Anita Tóth

An operational air quality forecasting model system has been developed and provides daily forecasts of ozone, nitrogen oxides, and particulate matter for the area of Hungary and three big cites of the country (Budapest, Miskolc, and Pécs). The core of the model system is the CHIMERE off-line chemical transport model. The AROME numerical weather prediction model provides the gridded meteorological inputs for the chemical model calculations. The horizontal resolution of the AROME meteorological fields is consistent with the CHIMERE horizontal resolution. The individual forecasted concentrations for the following 2 days are displayed on a public website of the Hungarian Meteorological Service. It is essential to have a quantitative understanding of the uncertainty in model output arising from uncertainties in the input meteorological fields. The main aim of this research is to probe the response of an air quality model to its uncertain meteorological inputs. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. During the past decades, meteorological ensemble modeling has received extensive research and operational interest because of its ability to better characterize forecast uncertainty. One such ensemble forecast system is the one of the AROME model, which has an 11-member ensemble where each member is perturbed by initial and lateral boundary conditions. In this work we focus on wintertime particulate matter concentrations, since this pollutant is extremely sensitive to near-surface mixing processes. Selecting a number of extreme air pollution situations we will show what the impact of the meteorological uncertainty is on the simulated concentration fields using AROME ensemble members.


2020 ◽  
Vol 56 (1) ◽  
pp. 2000147 ◽  
Author(s):  
Ulrike Gehring ◽  
Alet H. Wijga ◽  
Gerard H. Koppelman ◽  
Judith M. Vonk ◽  
Henriette A. Smit ◽  
...  

BackgroundAir pollution is associated with asthma development in children and adults, but the impact on asthma development during the transition from adolescence to adulthood is unclear. Adult studies lack historical exposures and consequently cannot assess the relevance of exposure during different periods of life. We assessed the relevance of early-life and more recent air pollution exposure for asthma development from birth until early adulthood.MethodsWe used data of 3687 participants of the prospective Dutch PIAMA (Prevention and Incidence of Asthma and Mite Allergy) birth cohort and linked asthma incidence until age 20 years to estimated concentrations of nitrogen dioxide (NO2), particulate matter with a diameter <2.5 μm (PM2.5), <10 μm (PM10), and 2.5–10 μm, and PM2.5 absorbance (“soot”) at the residential address. We assessed overall and age-specific associations with air pollution exposure with discrete time-hazard models, adjusting for potential confounders.ResultsOverall, we found higher incidence of asthma until the age of 20 years with higher exposure to all pollutants at the birth address (adjusted odds ratio (95% CI) ranging from 1.09 (1.01–1.18) for PM10 to 1.20 (1.10–1.32) for NO2) per interquartile range increase) that were rather persistent with age. Similar associations were observed with more recent exposure defined as exposure at the current home address. In two-pollutant models with particulate matter, associations with NO2 persisted.ConclusionsExposure to air pollution, especially from motorised traffic, early in life may have long-term consequences for asthma development, as it is associated with an increased risk of developing asthma through childhood and adolescence into early adulthood.


2019 ◽  
Vol 5 (1) ◽  
pp. 00052-2018 ◽  
Author(s):  
Aneesa Vanker ◽  
Polite M. Nduru ◽  
Whitney Barnett ◽  
Felix S. Dube ◽  
Peter D. Sly ◽  
...  

Indoor air pollution (IAP) or environmental tobacco smoke (ETS) exposure may influence nasopharyngeal carriage of bacterial species and development of lower respiratory tract infection (LRTI). The aim of this study was to longitudinally investigate the impact of antenatal or postnatal IAP/ETS exposure on nasopharyngeal bacteria in mothers and infants.A South African cohort study followed mother–infant pairs from birth through the first year. Nasopharyngeal swabs were taken at birth, 6 and 12 months for bacterial culture. Multivariable and multivariate Poisson regression investigated associations between nasopharyngeal bacterial species and IAP/ETS. IAP exposures (particulate matter, carbon monoxide, nitrogen dioxide, volatile organic compounds) were measured at home visits. ETS exposure was measured through maternal and infant urine cotinine. Infants received the 13-valent pneumococcal andHaemophilus influenzaeB conjugate vaccines.There were 881 maternal and 2605 infant nasopharyngeal swabs. Antenatal ETS exposure was associated withStreptococcus pneumoniaecarriage in mothers (adjusted risk ratio (aRR) 1.73 (95% CI 1.03–2.92)) while postnatal ETS exposure was associated with carriage in infants (aRR 1.14 (95% CI 1.00–1.30)) Postnatal particulate matter exposure was associated with the nasopharyngeal carriage ofH. influenzae(aRR 1.68 (95% CI 1.10– 2.57)) orMoraxella catarrhalis(aRR 1.42 (95% CI 1.03–1.97)) in infants.Early-life environmental exposures are associated with an increased prevalence of specific nasopharyngeal bacteria during infancy, which may predispose to LRTI.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3876 ◽  
Author(s):  
Zhe Liu ◽  
Xueli Chen ◽  
Jinyang Cai ◽  
Tomas Baležentis ◽  
Yue Li

Air pollution has become an increasingly serious environmental problem in China. Especially in winter, the air pollution in northern China becomes even worse due to winter heating. The “coal to gas” policy, which uses natural gas to replace coal in the heating system in winter, was implemented in Beijing in the year 2013. However, the effects of this policy reform have not been examined. Using a panel dataset of 16 districts in Beijing, this paper employs a first difference model to examine the impact of the “coal to gas” policy on air quality. Strong evidence shows that the “coal to gas” policy has significantly improved the air quality in Beijing. On average, the “coal to gas” policy reduced sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter smaller than 10 µm (PM10), particulate matter smaller than 2.5 µm (PM2.5) and carbon monoxide (CO) by 12.08%, 4.89%, 13.07%, 11.94% and 11.10% per year, respectively. We find that the “coal to gas” policy is more effective in areas with less energy use efficiency. The finding of this paper suggests that the government should continue to implement the “coal to gas” policy, so as to alleviate the air pollution in Beijing, China.


2019 ◽  
Vol 11 (10) ◽  
pp. 2728 ◽  
Author(s):  
Shulin Wang ◽  
Yongtao Li ◽  
Mahfuzul Haque

Environmental pollution, especially air pollution, is an alarming issue for the public, which is extensively debated among academic scholars. During the winter heating season, “smog” has become somewhat a normal phenomenon to local residents’ livelihood in northern China. Based on the daily air pollution data of regional cities in China from 2014 to 2016, and using a regression discontinuity design (RDD), the study finds that winter heating makes the air quality worse in the northern part of China. With the start of the winter heating, it increases the Air Quality Index (AQI) by 10.4%, particulate matter smaller than 10 μm (PM10) by 9.77%, particulate matter smaller than 2.5 μm (PM2.5) by 17.25%, CO by 9.84%, NO2 by 5.23%, and SO2 by 17.1%. Furthermore, dynamic changes demonstrate that air quality has gradually improved due to a series of heating policy changes implemented by the central government in recent years. Specifically, from 2014 to 2016, major indicators measuring the air pollution decrease dramatically, such as AQI by 92.36%, PM10 by 91.24%, PM2.5 by 84.06%, CO by 70.97%, NO2 by 52.76%, and SO2 by 17.15%.


BMJ Open ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. e020028 ◽  
Author(s):  
Lena Van den Eeden ◽  
Nathalie Lambrechts ◽  
Veerle Verheyen ◽  
Mario Berth ◽  
Greet Schoeters ◽  
...  

IntroductionAir pollution is a hot topic and is known to cause multiple health issues. Especially pregnant women seem to be vulnerable to environmental issues. There are data suggesting that exposure contributes to hypertensive disorders.This study aims to evaluate the effects of exposure to particulate matter (PM) and outdoor air pollutants on the clinical pregnancy outcome for mother and child and to determine which biochemical changes in maternal, placental and cord blood best explain this effect.Methods and analysisThis study is a prospective cohort study. We aim to recruit 200 pregnant women. The outcome measurements will include maternal parameters, labour parameters and neonatal parameters.Multiple samples will be analysed such as maternal urine samples (8-oxo-deoxyguanosine), maternal blood samples (routine blood sampling, biomarkers of pre-eclampsia and transcript markers), maternal hair samples, neonatal blood samples (transcript markers) combined with extensive questionnaires.Ethics and disseminationWe obtain informed consent from each participant prior to enrolment in the study.The study has received approval by the Ethical Committee of the Antwerp University Hospital (14/40/411).IPANEMA is the first prospective study to assess the impact of PM on mothers and babies in Antwerp, Belgium.Findings from this study will contribute to improve knowledge on the impact of exposure to air pollution on mothers and babies and will also define biomarkers as predictors for pregnant women at risk.Trial registrationClinicalTrials.gov: 14/40/411. Registered 22-10-2015.


2018 ◽  
Vol 34 (8) ◽  
pp. 1354-1360 ◽  
Author(s):  
Ping-Fang Chiu ◽  
Chin-Hua Chang ◽  
Chia-Lin Wu ◽  
Teng-Hsiang Chang ◽  
Chun-Chieh Tsai ◽  
...  

Abstract Background Numerous studies have shown that exposure to air pollution, especially particulate matter (PM) with a diameter <2.5 μm (PM2.5), was associated with various diseases. We tried to determine the impact of PM2.5 and other weather factors on acute lung edema in patients with Stage 5 nondialysis chronic kidney disease (CKD Stage 5-ND). Methods In total, 317 CKD Stage 5-ND (estimated glomerular filtration rate 6.79 ± 4.56 mL/min) patients residing in central Taiwan who developed acute lung edema and initiated long-term dialysis were included in this case-crossover study. Pearson’s correlation test was used to examine the relationship of acute lung edema cases with PM2.5 levels and ambient temperature separately. Results The average PM2.5 level within the 7-day period correlated with acute lung edema incidence in the fall [adjusted odds ratio (OR) 3.23, P = 0.047] and winter (adjusted OR 1.99, P < 0.001). In winter, even a 3-day exposure to PM2.5 was associated with increased risk (adjusted OR 1.55, P < 0.001). The average temperatures within 3 days in spring and summer were correlated positively with the risk (adjusted OR 2.77 P < 0.001 and adjusted OR 2.72, P < 0.001, respectively). In the fall and winter, temperatures were correlated negatively with the risk (adjusted OR 0.36, P < 0.001 and adjusted OR 0.54, P < 0.001, respectively). Conclusions A high PM2.5 level was associated with an increased risk of acute lung edema. High ambient temperature in hot seasons and low ambient temperature in cold seasons were also associated with increased risk. It is essential to educate these patients to avoid areas with severe air pollution and extreme ambient temperature.


2018 ◽  
pp. 6.09-6.21 ◽  
Author(s):  
Jennifer Spencer ◽  
Bill Van Heyst

Particulate matter (PM) has been documented in an increasing number of research studies as having a known or suspected negative impact on human health. The World Health Organization (WHO) estimates that 3.1 million deaths were caused by ambient fine particulate matter (PM2.5) in 2010. While many Canadian studies focus on health impacts from PM2.5, there is a gap with respect to rural sourced PM2.5 and health impacts in these areas. This paper reviews the impact PM2.5 has on Canadians’ health, investigates where PM2.5 data is being gathered, and outlines the sources of PM2.5 reported. Secondary inorganic aerosols that are formed in and around animal production facilities due to the higher prevalence of ammonia gas is of particular interest. The conclusion drawn is that the reporting and gathering of rural sourced PM2.5 data is lacking, leading to a gap in the data used to determine the impacts on Canadian human health.


Sign in / Sign up

Export Citation Format

Share Document