scholarly journals The Process of Producing Bioethanol from Delignified Cellulose Isolated from Plants of the Miscanthus Genus

2020 ◽  
Vol 7 (2) ◽  
pp. 61
Author(s):  
Olga Kriger ◽  
Ekaterina Budenkova ◽  
Olga Babich ◽  
Stanislav Suhih ◽  
Nikolay Patyukov ◽  
...  

Plants of the Miscanthus genus (Miscanthus Anderss.) have a unique index of biomass production in relation to the occupied area. Miscanthus plants can be attributed to promising second-generation raw materials for the production of bioethanol and biofuel. Miscanthus plants are characterized by a high cellulose content. Herein, we report the results of a study on the obtained delignified cellulose with subsequent processing into bioethanol using microbial communities. In the course of the study, the optimal conditions for the delignification of the initial plant material for cellulose were selected. Ethanol with a high degree of conversion was successfully obtained from the isolated delignified cellulose. The article describes the pilot technological scheme for the conversion of Miscanthus plant biomass to bioethanol involving the delignification stages, followed by the conversion of the resulting cellulose into bioethanol by a consortium of microorganisms. As a result of the study, it was found that delignification using trifluoroacetic acid leads to the production of cellulose of high purity. Bioethanol with a yield of 3.1% to 3.4% in terms of the initial amount of biomass was successfully obtained by a microorganism consortium of Saccharomyces cerevisiae M Y-4242/Pachysolen tannophilus Y-3269, and Scheffersomyces stipitis Y-3264.

2021 ◽  
Vol 14 (4) ◽  
pp. 53-63
Author(s):  
O. M. Yaroshko ◽  

Local cultivars of A. caudatus: Helios and Karmin were used as plant material. Amaranth is a new pseudocereal introduced in Ukraine. The plant biomass of amaranth is used in medicine, food industry and cosmetology industry. Aim. The purpose of the work was to identify the optimal conditions for the transient expression of reporter genes in Amaranthus caudatus cultivars. Methods. Biochemical and microscopy methods were used in the following work. Seedlings and adult plants of different age were infiltrated with agrobacterial suspensions separately (genetic vector pCBV19 with a uidA gene and genetic vector pNMD2501 with a gfp gene in Agrobacterium tumefaciens GV3101 strain). Results. Transient expression of the uidA and gfp genes was obtained in amaranth plants after conduction series of experiments. The most intensive transient expression of gfp and uidA genes was observed in seedlings infiltrated at the age of 1 day. The maximum fluorescence of the GFP protein was observed on 5th–6th days. Conclusions. It was shown that the cultivar Helios was more susceptible to agrobacterial infection than the cultivar Karmin. The effectiveness of Agrobacterium mediated transformation was from 16% to 95% for the Helios cultivar and from 12% to 93% for the Karmin cultivar. The obtained results indicate that the studied amaranth cultivars can potentially be used for obtaining transient expression of target genes and synthesizing target proteins in their tissues in the future.


2019 ◽  
Vol 22 (3) ◽  
pp. 483-489
Author(s):  
Edison Edison ◽  
Andarini Diharmi ◽  
Ela Davera Sari

Microcrystalline Cellulose (MCC) is a modified of cellulose widely used as an additive in food and pharmaceutical industry. MCC is used in the pharmaceutical field as an excipient compound in the manufacture of tablets. Raw materials for MCC are of high cellulose content, such as Eucheuma cottonii seaweed. This study was aimed to determine the characteristics of MCC from seaweed E. cottonii. The MCC was obtained by hydrolyzing of α-cellulose from seaweed E. cottonii using HCl solution with three different concentrations: 2, 2.5 and 3 N. The chemical compositions (water, ash, protein, lipid, and carbohydrate) of red seaweed flour were determined. The moisture, ash, sensory, yield, and pH of the MCC were also analysed. The results showed that E. cottonii seaweed flour had moisture, protein, fat, ash, and carbohydrate content 3.88%, 0.85%, 2.4%, 3.44%, and 89.4% respectively. HCl concentrations had a significant effect on the moisture and ash content.  The MCC had a yield of 35.8-38.00%, pH 5.73-6.82, moisture content 4.09.6, ash 0.94-4.90%. The characteristics of the MCC was in accordance with the standards of the British Pharmacopeia except the ash content.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7684-7701
Author(s):  
Noppadol Panchan ◽  
Pattra Wattanapan ◽  
Sirada Sungsinchai ◽  
Supacharee Roddecha ◽  
Peerapan Dittanet ◽  
...  

Pineapple leaf waste, with its high cellulose content, can serve as alternative starting material for the production of carboxymethyl cellulose (CMC). In this study, synthesis conditions of CMC from pineapple leaves via the use of microwave heating were optimized. Box-Behnken design and response surface methodology were applied to schedule the experiments and to optimize the synthesis condition, respectively. Preparation of CMC was investigated by varying three factors, namely, sodium hydroxide (NaOH) concentration, monochloroacetic acid (MCA) dose, and etherification time. The process of carboxymethylation was optimized to produce CMC with high degree of substitution (DS). Optimal condition for CMC synthesis was noted to be 50% (w/v) NaOH solution, 8 g of MCA/g cellulose, and etherification time of 16 min; such optimal condition resulted in the maximum DS of 0.78. Synthesized CMC was utilized as a thickener for liquid foods (water, orange juice, milk, and mushroom cream soup) where 2% (w/v) as-synthesized CMC increased the viscosity of the foods and changed their characteristics from thin to nectar-like liquids.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7684-7701
Author(s):  
Noppadol Panchan ◽  
Pattra Wattanapan ◽  
Sirada Sungsinchai ◽  
Supacharee Roddecha ◽  
Peerapan Dittanet ◽  
...  

Pineapple leaf waste, with its high cellulose content, can serve as alternative starting material for the production of carboxymethyl cellulose (CMC). In this study, synthesis conditions of CMC from pineapple leaves via the use of microwave heating were optimized. Box-Behnken design and response surface methodology were applied to schedule the experiments and to optimize the synthesis condition, respectively. Preparation of CMC was investigated by varying three factors, namely, sodium hydroxide (NaOH) concentration, monochloroacetic acid (MCA) dose, and etherification time. The process of carboxymethylation was optimized to produce CMC with high degree of substitution (DS). Optimal condition for CMC synthesis was noted to be 50% (w/v) NaOH solution, 8 g of MCA/g cellulose, and etherification time of 16 min; such optimal condition resulted in the maximum DS of 0.78. Synthesized CMC was utilized as a thickener for liquid foods (water, orange juice, milk, and mushroom cream soup) where 2% (w/v) as-synthesized CMC increased the viscosity of the foods and changed their characteristics from thin to nectar-like liquids.


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 42
Author(s):  
Aleksandr S. Kazachenko ◽  
Valery E. Tarabanko ◽  
Angelina V. Miroshnikova ◽  
Valentin V. Sychev ◽  
Andrey M. Skripnikov ◽  
...  

Flax shive is the main waste (up to 70 wt %) in the production of flax fiber. It represents the lignified parts of the flax stem mainly in the form of small straws. Complex processing of such wastes is a significant problem due to the heterogeneity of the chemical structure of lignin. This article presents the results of reductive catalytic fractionation (RCF) of flax shive in ethanol and isopropanol at elevated temperatures (225–250 °C) in the presence of a bifunctional catalyst (Ru/C) and molecular hydrogen. This provides solvolytic depolymerization of lignin and hemicelluloses presented in flax shive. Catalytic hydrogenation effectively stabilizes the formed lignin intermediates and prevents repolymerization reactions producing the lignin fraction with a high degree of depolymerization. RCF of flax shive produces solid products with a high cellulose content and liquid products consisting mainly of monophenolic compounds. Furthermore, the effect of different characteristics (the ruthenium content, particle size, and support acidity) of the bifunctional catalysts containing ruthenium nanoparticles supported on mesoporous, graphite-like carbon material Sibunit®-4 on the yield and composition of the products of hydrogenation of flax shive in sub- and super-critical ethanol has been studied. Bifunctional catalysts Ru/C used in the RCF of flax shive increase its conversion from 44 to 56 wt % and the yield of monophenols from 1.1 to 10.2 wt % (based on the weight of lignin in the sample). Using the best Ru/C catalyst containing 3% of Ru on oxidized at 400 °C carbon support, the high degree of delignification (up to 79.0%), cellulose yield (up to 67.2 wt %), and monophenols yield (up to 9.5 wt %) have been obtained.


2021 ◽  
Vol 1 (10) ◽  
pp. 389-393
Author(s):  
Sari Rizky Amelia ◽  
Muhammad Yerizam ◽  
Erwana Dewi

Tandan kosong kelapa sawit (TKKS) merupakan limbah padatan yang dihasilkan dari proses pembuatan minyak kelapa sawit yang selulosa (45,95%), kadar abu (1,23%), hemiselulosa (22,84%), kadar air (3,74%) dan lignin (16,49%). Pelepah pisang mempunyai kandungan selulosa yang tinggi akan tetapi belum dimanfaatkan secara optimal yang memiliki kandungan densitas ( 1,35 gr/cm3), selulosa (63 -64 %), hemiselulosa (20 %), lignin (5%), kekuatan Tarik rata-rata (600 Mpa), modulus tarik rata-rata (17,85 Gpa), pertambahan panjang (3,36 %), diameter serat (5,8 µm), serta panjang serat (30,9240 cm). Namun bahan-bahan ini mempunyai karakteristik dan sifat fisika kimia yang berbeda-beda. Karakteristik menjadikan perlunya analisa agar menghasilkan pulp yang diinginkan berada pada kondisi optimal. Beberapa parameter yang diukur di antaranya, konsentrasi larutan NaOH dengan variasi 7% dan 9%, dengan variasi bahan baku 40-60% serta waktu pemasakan dengan variasi waktu 75, 90, 105, 120 dan 135 menit. Sehingga pada penelitian ini didapatkan kondisi optimumnya yakni pada rasio 40:60, dengan konsentrasi 9% dan waktu pemasakan selama 120 menit didapatkan nilai kadar lignin 11,21% dan kadar selulosa 68,94%. Oil palm empty fruit bunches or TKKS are solid wastes produced from the process of making palm oil which are cellulose (45.95%), ash content (1.23%), hemicellulose (22.84%), water content (3.74 %) and lignin (16.49%). Banana midrib has a high cellulose content but has not been used optimally which contains density (1.35 g/cm3), cellulose (63 -64 %), hemicellulose (20 %), lignin (5%), average tensile strength. average (600 Mpa), average tensile modulus (17.85 Gpa), increase in length (3.36%), fiber diameter (5.8 m), and fiber length (30,9240 cm). However, these materials have different physicochemical characteristics and properties. The characteristics make the need for analysis in order to produce the desired pulp in optimal conditions. Several parameters were measured including the concentration of NaOH solution with variations of 7% and 9%, with variations of raw materials 40-60% and cooking time with variations of 75, 90, 105, 120 and 135 minutes. So that in this study the optimum conditions were obtained, namely at a ratio of 40:60, with a concentration of 9% and cooking time for 120 minutes, the lignin content was 11.21% and the cellulose content was 68.94%.


Jurnal Zarah ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 79-85
Author(s):  
Oktaffi Oktaffi Arinna Manasikana

The increasing need for paper and the demands of the community for environmentally friendly technology is increasing, causing the need for a large supply of paper raw materials to the paper industry sector. The limited supply of raw materials for paper production caused by environmental issues causes the price of paper to rise. The content of bagasse is cellulose, pentosan, lignin and others, while the content of corn husk consists of ash, lignin, cellulose, and hemicellulose. These components can be used as paper making materials because they have high cellulose content. The resulting paper is expected to be used as an environmentally friendly packaging material. The purpose of this study is to determine the potential of corn husk waste and bagasse as an environmentally friendly packaging paper material, as well as to analyze the comparison between the composition of corn husk and sugarcane bagasse to produce the highest quality packaging paper . The test samples used in this study are tensile, elasticity and biodegradability tests. The results showed that corn husk waste and sugarcane bagasse have the potential to be environmentally friendly packaging paper. Paper with the best quality is compared to 25% corn husk and 75% bagasse with a tensile test of 14.8 N elasticity test of 13.33% and 50% biodegrated paper area.


2020 ◽  
Vol 20 (5-6) ◽  
pp. 170-174
Author(s):  
Svetlana A. Petukhova ◽  
Alina A. Posokhina ◽  
Vera M. Mirovich

The article presents the method for the quantitative determination of flavonoids for the analysis of Bupleurum multinerve herb based on the method of differential spectrophotometry. The optimal conditions for analysis have been determined. They include extractant 40% ethyl alcohol, ratio of raw materials and extractant 1 : 100, extraction time of 60 minutes in the boiling water bath, complexing agent of 1 ml of 2% aluminum chloride. The use of rutin as a standard has been experimentally validated, analytical wavelength is 412 nm. The relative error of the mean result (for n = 9) was 3.20%. Validation studies of the method have shown that it meets the criteria: linearity (r = 0.99988), correctness, specificity, and precision. The analytical range of the method is 8.6726.08 g/ml. The method is recommended for the inclusion into the new edition of the Pharmacopoeia Monograph for this type of plant material.


Author(s):  
O. Yu. Kichigina

At production of stainless steel expensive alloying elements, containing nickel, are used. To decrease the steel cost, substitution of nickel during steel alloying process by its oxides is an actual task. Results of analysis of thermodynamic and experimental studies of nickel reducing from its oxide presented, as well as methods of nickel oxide obtaining at manganese bearing complex raw materials enrichment and practice of its application during steel alloying. Technology of comprehensive processing of complex manganese-containing raw materials considered, including leaching and selective extraction out of the solution valuable components: manganese, nickel, iron, cobalt and copper. Based on theoretical and experiment studies, a possibility of substitution of metal nickel by concentrates, obtained as a result of hydrometallurgical enrichment, was confirmed. Optimal technological parameters, ensuring high degree of nickel recovery out of the initial raw materials were determined. It was established, that for direct steel alloying it is reasonable to add into the charge pellets, consisting of nickel concentrate and coke fines, that enables to reach the through nickel recovery at a level of 90%. The proposed method of alloying steel by nickel gives a possibility to decrease considerably steel cost at the expense of application of nickel concentrate, obtained out of tails of hydrometallurgical enrichment of manganese-bearing raw materials, which is much cheaper comparing with the metal nickel.


Author(s):  
V. S. Boltovsky

Prospects for the development of hydrolysis production are determined by the relevance of industrial use of plant biomass to replace the declining reserves of fossil organic raw materials and increasing demand for ethanol, especially for its use as automobile fuel, protein-containing feed additives that compensate for protein deficiency in feed production, and other products. Based on the review of the research results presented in the scientific literature, the analysis of modern methods of liquid-phase acid hydrolysis of cellulose and various types of plant raw materials, including those that differ from traditional ones, is performed. The main directions of increasing its efficiency through the use of new catalytic systems and process conditions are identified. It is shown that the most promising methods for obtaining monosaccharides in hydrolytic processing of cellulose and microcrystalline cellulose, pentosan-containing agricultural waste and wood, are methods for carrying out the process at elevated and supercritical temperatures (high-temperature hydrolysis), the use of new types of solid-acid catalysts and ionic liquids. 


Sign in / Sign up

Export Citation Format

Share Document