scholarly journals Characteristic of Microcrystalline Cellulose from Red Seaweed Eucheuma cottonii

2019 ◽  
Vol 22 (3) ◽  
pp. 483-489
Author(s):  
Edison Edison ◽  
Andarini Diharmi ◽  
Ela Davera Sari

Microcrystalline Cellulose (MCC) is a modified of cellulose widely used as an additive in food and pharmaceutical industry. MCC is used in the pharmaceutical field as an excipient compound in the manufacture of tablets. Raw materials for MCC are of high cellulose content, such as Eucheuma cottonii seaweed. This study was aimed to determine the characteristics of MCC from seaweed E. cottonii. The MCC was obtained by hydrolyzing of α-cellulose from seaweed E. cottonii using HCl solution with three different concentrations: 2, 2.5 and 3 N. The chemical compositions (water, ash, protein, lipid, and carbohydrate) of red seaweed flour were determined. The moisture, ash, sensory, yield, and pH of the MCC were also analysed. The results showed that E. cottonii seaweed flour had moisture, protein, fat, ash, and carbohydrate content 3.88%, 0.85%, 2.4%, 3.44%, and 89.4% respectively. HCl concentrations had a significant effect on the moisture and ash content.  The MCC had a yield of 35.8-38.00%, pH 5.73-6.82, moisture content 4.09.6, ash 0.94-4.90%. The characteristics of the MCC was in accordance with the standards of the British Pharmacopeia except the ash content.

Author(s):  
C. C. Nwajiobi ◽  
J. O. E. Otaigbe ◽  
O. Oriji

Microcrystalline celluloses (MCC) were prepared from α-celluloses obtained from fluted pumpkin stalk and pod. The substrates were subjected to treatment with 2% (w/v) NaOH, 3.5% (w/v) NaOCl and 17.5% (w/v) NaOH solutions respectively to obtain alpha celluloses. Acid hydrolysis of the alpha-celluloses using 2.5 N hydrochloric acid were carried out. The study evaluates and compares the physicochemical properties of microcrystalline cellulose obtained from the pod and stalk of fluted pumpkin. Composition of cellulose, hemicellulose and lignin were also determined. Results showed cellulose; hemicellulose and lignin content of the pod husk and stalk were 49%, 26%, 9% and 41%, 24%, 26%, respectively. The morphology of the hydrolyzed MCCs’ were investigated using scanning electron microscopy (SEM) and the results revealed the stalk (FS-MCC) to have an individual rod-like shaped fiber when compared with flat-shaped large aggregated forms of the pod (FP-MCC). The particles sizes were also uneven with FP-MCC (6.689 µm) having larger particle sizes than FS-MCC (5.538 µm). The high cellulose content of the pod husk shows that the applications may be extended in the production of other cellulose derivatives while the high lignin content of the stalk reveals other alternative source of producing lignin in the making of textile dyes, coating and other agricultural chemical. Pod MCC (FP-MCC) had better physicochemical properties than the stalk MCC (FS-MCC).


2020 ◽  
Vol 7 (2) ◽  
pp. 61
Author(s):  
Olga Kriger ◽  
Ekaterina Budenkova ◽  
Olga Babich ◽  
Stanislav Suhih ◽  
Nikolay Patyukov ◽  
...  

Plants of the Miscanthus genus (Miscanthus Anderss.) have a unique index of biomass production in relation to the occupied area. Miscanthus plants can be attributed to promising second-generation raw materials for the production of bioethanol and biofuel. Miscanthus plants are characterized by a high cellulose content. Herein, we report the results of a study on the obtained delignified cellulose with subsequent processing into bioethanol using microbial communities. In the course of the study, the optimal conditions for the delignification of the initial plant material for cellulose were selected. Ethanol with a high degree of conversion was successfully obtained from the isolated delignified cellulose. The article describes the pilot technological scheme for the conversion of Miscanthus plant biomass to bioethanol involving the delignification stages, followed by the conversion of the resulting cellulose into bioethanol by a consortium of microorganisms. As a result of the study, it was found that delignification using trifluoroacetic acid leads to the production of cellulose of high purity. Bioethanol with a yield of 3.1% to 3.4% in terms of the initial amount of biomass was successfully obtained by a microorganism consortium of Saccharomyces cerevisiae M Y-4242/Pachysolen tannophilus Y-3269, and Scheffersomyces stipitis Y-3264.


2011 ◽  
Vol 399-401 ◽  
pp. 1531-1535 ◽  
Author(s):  
Shi Da Miao ◽  
You Yan Liu ◽  
Ping Wang ◽  
Song Ping Zhang

Castor oil and microcrystalline cellulose were employed as biomass feedstock to produce bio-based polymer composites with increased tensile strength. The polymer composites were prepared by curing castor oil with 4,4'-methylenebis (phenyl isocyanate) (MDI) in the presence of microcrystalline cellulose (MC) or modified MC (MMC). The MMC was prepared by reacting MDI with MC to introduce isocyanate groups to the surface of MC. X-ray diffraction spectra suggested the good retention of the crystalline structure of MC or MMC in the composites. SEM analysis showed the well dispersion of MC or MMC in the composites. All of these factors are critical to reinforcing the composites. Mechanical tests of the composites revealed that the reinforcing effect of MMC was more significant than MC at high cellulose content such that the highest tensile strengths of 4.87 MPa was obtained for the composite containing 43% (wt) of MMC. That is almost 5 times higher than that of neat castor oil-based polyurethane.


Author(s):  
Muhamad Darmawan ◽  
Bagus Sediadi Bandol Utomo ◽  
Raekal Amral Yuda Mulia

The presented study has been carried out in order to study the quality of Alkali Treated Cottonii (ATC) made from Eucheuma cottonii which being collected from different regions in Indonesia (Belitung, Nusa Tenggara Barat and Lampung). The quality variables analyzed were the characteristics of raw materials (Clean anhydrous weed and impurities) and the characteristics of ATC produced (moisture content, ash content, acid insoluble ash content, yield, gel strength, sulphate content, gelling -melting point). The analysis was done in 3 replicates and the data were statistically analyzed using SPSS 15 package software. Results indicated that the raw material from Lampung had a better quality than those from Nusa Tenggara Barat and Belitung. In addition, the characteristics of ATC produced from these three raw materials showed that seaweed from Lampung produced better quality ATC than those from Nusa Tenggara Barat and Belitung in terms of their gel strength, sulphate content and yield.


2021 ◽  
Vol 1 (10) ◽  
pp. 389-393
Author(s):  
Sari Rizky Amelia ◽  
Muhammad Yerizam ◽  
Erwana Dewi

Tandan kosong kelapa sawit (TKKS) merupakan limbah padatan yang dihasilkan dari proses pembuatan minyak kelapa sawit yang selulosa (45,95%), kadar abu (1,23%), hemiselulosa (22,84%), kadar air (3,74%) dan lignin (16,49%). Pelepah pisang mempunyai kandungan selulosa yang tinggi akan tetapi belum dimanfaatkan secara optimal yang memiliki kandungan densitas ( 1,35 gr/cm3), selulosa (63 -64 %), hemiselulosa (20 %), lignin (5%), kekuatan Tarik rata-rata (600 Mpa), modulus tarik rata-rata (17,85 Gpa), pertambahan panjang (3,36 %), diameter serat (5,8 µm), serta panjang serat (30,9240 cm). Namun bahan-bahan ini mempunyai karakteristik dan sifat fisika kimia yang berbeda-beda. Karakteristik menjadikan perlunya analisa agar menghasilkan pulp yang diinginkan berada pada kondisi optimal. Beberapa parameter yang diukur di antaranya, konsentrasi larutan NaOH dengan variasi 7% dan 9%, dengan variasi bahan baku 40-60% serta waktu pemasakan dengan variasi waktu 75, 90, 105, 120 dan 135 menit. Sehingga pada penelitian ini didapatkan kondisi optimumnya yakni pada rasio 40:60, dengan konsentrasi 9% dan waktu pemasakan selama 120 menit didapatkan nilai kadar lignin 11,21% dan kadar selulosa 68,94%. Oil palm empty fruit bunches or TKKS are solid wastes produced from the process of making palm oil which are cellulose (45.95%), ash content (1.23%), hemicellulose (22.84%), water content (3.74 %) and lignin (16.49%). Banana midrib has a high cellulose content but has not been used optimally which contains density (1.35 g/cm3), cellulose (63 -64 %), hemicellulose (20 %), lignin (5%), average tensile strength. average (600 Mpa), average tensile modulus (17.85 Gpa), increase in length (3.36%), fiber diameter (5.8 m), and fiber length (30,9240 cm). However, these materials have different physicochemical characteristics and properties. The characteristics make the need for analysis in order to produce the desired pulp in optimal conditions. Several parameters were measured including the concentration of NaOH solution with variations of 7% and 9%, with variations of raw materials 40-60% and cooking time with variations of 75, 90, 105, 120 and 135 minutes. So that in this study the optimum conditions were obtained, namely at a ratio of 40:60, with a concentration of 9% and cooking time for 120 minutes, the lignin content was 11.21% and the cellulose content was 68.94%.


Jurnal Zarah ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 79-85
Author(s):  
Oktaffi Oktaffi Arinna Manasikana

The increasing need for paper and the demands of the community for environmentally friendly technology is increasing, causing the need for a large supply of paper raw materials to the paper industry sector. The limited supply of raw materials for paper production caused by environmental issues causes the price of paper to rise. The content of bagasse is cellulose, pentosan, lignin and others, while the content of corn husk consists of ash, lignin, cellulose, and hemicellulose. These components can be used as paper making materials because they have high cellulose content. The resulting paper is expected to be used as an environmentally friendly packaging material. The purpose of this study is to determine the potential of corn husk waste and bagasse as an environmentally friendly packaging paper material, as well as to analyze the comparison between the composition of corn husk and sugarcane bagasse to produce the highest quality packaging paper . The test samples used in this study are tensile, elasticity and biodegradability tests. The results showed that corn husk waste and sugarcane bagasse have the potential to be environmentally friendly packaging paper. Paper with the best quality is compared to 25% corn husk and 75% bagasse with a tensile test of 14.8 N elasticity test of 13.33% and 50% biodegrated paper area.


2019 ◽  
Author(s):  
Wan-Ting (Grace) Chen ◽  
Zhenwei Wu ◽  
Buchun Si ◽  
Yuanhui Zhang

This study aims to produce renewable diesel and biopriviliged chemicals from microalgae that can thrive in wastewater environment. <i>Spirulina</i> (SP) was converted into biocrude oil at 300ºC for a 30-minute reaction time via hydrothermal liquefaction (HTL). Next, fractional distillation was used to separate SP-derived biocrude oil into different distillates. It was found that 62% of the viscous SP-derived biocrude oil can be separated into liquids at about 270ºC (steam temperature of the distillation). Physicochemical characterizations, including density, viscosity, acidity, elemental compositions, higher heating values and chemical compositions, were carried out with the distillates separated from SP-derived biocrude oil. These analyses showed that 15% distillates could be used as renewable diesel because they have similar heating values (43-46 MJ/kg) and carbon numbers (ranging from C8 to C18) to petroleum diesel. The Van Krevelan diagram of the distillates suggests that deoxygenation was effectively achieved by fractional distillation. In addition, GC-MS analysis indicates that some distillates contain biopriviliged chemicals like aromatics, phenols and fatty nitriles that can be used as commodity chemicals. An algal biorefinery roadmap was proposed based on the analyses of different distillates from the SP-derived biocrude oil. Finally, the fuel specification analysis was conducted with the drop-in renewable diesel, which was prepared with 10 vol.% (HTL10) distillates and 90 vol.% petroleum diesel. According to the fuel specification analysis, HTL10 exhibited a qualified lubricity (<520 µm), acidity (<0.3 mg KOH/g) and oxidation stability (>6 hr), as well as a comparable net heat of combustion (1% lower), ash content (29% lower) and viscosity (17% lower) to those of petroleum diesel. Ultimately, it is expected that this study can provide insights for potential application of algal biocrude oil converted via HTL.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 447
Author(s):  
Miguel Alfonso Quiñones-Reveles ◽  
Víctor Manuel Ruiz-García ◽  
Sarai Ramos-Vargas ◽  
Benedicto Vargas-Larreta ◽  
Omar Masera-Cerutti ◽  
...  

This study aimed to evaluate and compare the relationship between chemical properties, energy efficiency, and emissions of wood and pellets from madroño Arbutus xalapensis Kunth, tázcate Juniperus deppeana Steud, and encino colorado Quercus sideroxyla Humb. & Bonpl. in two gasifiers (top-lit-up-draft (T-LUD) and electricity generation wood camp stove (EGWCS)) in order to determine the reduction of footprint carbon. In accordance with conventional methodologies, we determined the extracts and chemical components (lignin, cellulose, holocellulose), and the immediate analyses were carried out (volatile materials, fixed carbon, ash content and microanalysis of said ash), as well as the evaluation of emission factors (total suspended particulate matter (PM2.5), CO, CO2, CH4, black carbon (BC), elemental carbon (EC), and organic carbon (OC)). The results were statistically analyzed to compare each variable among species and gasifiers. The raw material analyzed showed how the pH ranged from 5.01 to 5.57, and the ash content ranged between 0.39 and 0.53%. The content values of Cu, Zn, Fe, Mg, and Ca ranged from 0.08 to 0.22, 0.18 to 0.19, 0.38 to 0.84, 1.75 to 1.90, and 3.62 to 3.74 mg kg−1, respectively. The extractive ranges from cyclohexane were 2.48–4.79%, acetone 2.42–4.08%, methanol 3.17–7.99%, and hot water 2.12–4.83%. The range of lignin was 18.08–28.60%. The cellulose content ranged from 43.30 to 53.90%, and holocellulose from 53.50 to 64.02%. The volatile material range was 81.2–87.42%, while fixed carbon was 11.30–17.48%; the higher heating value (HHV) of raw material and pellets presented the ranges 17.68–20.21 and 19.72–21.81 MJ kg−1, respectively. Thermal efficiency showed statistically significant differences (p < 0.05) between pellets and gasifiers, with an average of 31% Tier 3 in ISO (International Organization for Standardization) for the T-LUD and 14% (ISO Tier 1) for EGWCS, with Arbutus xalapensis being the species with the highest energy yield. The use of improved combustion devices, as well as that of selected raw material species, can reduce the impact of global warming by up to 33% on a cooking task compared to the three-stone burner.


2020 ◽  
Vol 27 (1) ◽  
pp. 424-432
Author(s):  
Hongkai Zhao ◽  
Kehan Zhang ◽  
Shoupeng Rui ◽  
Peipei Zhao

AbstractIn the present contribution, an environmental-friendly and cost-effective adsorbent was reported for soil treatment and desertification control. A novel foam gel material was synthesized here by the physical foaming in the absence of catalyst. By adopting modified microcrystalline cellulose and chitosan as raw materials and sodium dodecyl sulfonate (SDS) as foaming agent, a microcrystalline cellulose/chitosan blend foam gel was synthesized. It is expected to replace polymers derived from petroleum for agricultural applications. In addition, a systematical study was conducted on the adsorbability, water holding capacity and re-expansion performance of foam gel in deionized water and brine under different SDS concentrations (2%–5%) as well as adsorption time. To be specific, the adsorption capacity of foam gel was up to 105g/g in distilled water and 54g/g in brine, indicating a high water absorption performance. As revealed from the results of Fourier transform infrared spectroscopy (FTIR) analysis, both the amino group of chitosan and the aldehyde group modified by cellulose were involved. According to the results of Scanning electron microscope (SEM) analysis, the foam gel was found to exhibit an interconnected pore network with uniform pore space. As suggested by Bet analysis, the macroporous structure was formed in the sample, and the pore size ranged from 0 to 170nm. The mentioned findings demonstrated that the foam gel material of this study refers to a potential environmental absorbent to improve soil and desert environments. It can act as a powerful alternative to conventional petroleum derived polymers.


2016 ◽  
Vol 66 (2) ◽  
pp. 289-295
Author(s):  
Borche Stamatoski ◽  
Miroslava Ilievska ◽  
Hristina Babunovska ◽  
Nikola Sekulovski ◽  
Sasho Panov

AbstractMicrobiological control is of crucial importance in the pharmaceutical industry regarding the possible bacterial contamination of the environment, water, raw materials and finished products. Molecular identification of bacterial contaminants based on DNA sequencing of the hypervariable 16SrRNA gene has been introduced recently. The aim of this study is to investigate the suitability of gene sequencing using our selection of PCR primers and conditions for rapid and accurate bacterial identification in pharmaceutical industry quality control.DNA was extracted from overnight incubated colonies from 10 bacterial ATCC strains, which are common contaminants in the pharmaceutical industry. A region of bacterial 16SrRNA gene was analyzed by bidirectional DNA sequencing. Bacterial identification based on partial sequencing of the 16SrRNA gene is the appropriate method that could be used in the pharmaceutical industry after adequate validations. We have successfully identified all tested bacteria with more than 99 % similarity to the already published sequences.


Sign in / Sign up

Export Citation Format

Share Document