scholarly journals Highlighting Human Enzymes Active in Different Metabolic Pathways and Diseases: The Case Study of EC 1.2.3.1 and EC 2.3.1.9

Biomedicines ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 250
Author(s):  
Giulia Babbi ◽  
Davide Baldazzi ◽  
Castrense Savojardo ◽  
Martelli Pier Luigi ◽  
Rita Casadio

Enzymes are key proteins performing the basic functional activities in cells. In humans, enzymes can be also responsible for diseases, and the molecular mechanisms underlying the genotype to phenotype relationship are under investigation for diagnosis and medical care. Here, we focus on highlighting enzymes that are active in different metabolic pathways and become relevant hubs in protein interaction networks. We perform a statistics to derive our present knowledge on human metabolic pathways (the Kyoto Encyclopaedia of Genes and Genomes (KEGG)), and we found that activity aldehyde dehydrogenase (NAD(+)), described by Enzyme Commission number EC 1.2.1.3, and activity acetyl-CoA C-acetyltransferase (EC 2.3.1.9) are the ones most frequently involved. By associating functional activities (EC numbers) to enzyme proteins, we found the proteins most frequently involved in metabolic pathways. With our analysis, we found that these proteins are endowed with the highest numbers of interaction partners when compared to all the enzymes in the pathways and with the highest numbers of predicted interaction sites. As specific enzyme protein test cases, we focus on Alpha-Aminoadipic Semialdehyde Dehydrogenase (ALDH7A1, EC 2.3.1.9) and Acetyl-CoA acetyltransferase, cytosolic and mitochondrial (gene products of ACAT2 and ACAT1, respectively; EC 2.3.1.9). With computational approaches we show that it is possible, by starting from the enzyme structure, to highlight clues of their multiple roles in different pathways and of putative mechanisms promoting the association of genes to disease.

2000 ◽  
Vol 182 (17) ◽  
pp. 4704-4710 ◽  
Author(s):  
Nobuhiro Takahashi ◽  
Takuichi Sato ◽  
Tadashi Yamada

ABSTRACT Metabolic pathways involved in the formation of cytotoxic end products by Porphyromonas gingivalis were studied. The washed cells of P. gingivalis ATCC 33277 utilized peptides but not single amino acids. Since glutamate and aspartate moieties in the peptides were consumed most intensively, a dipeptide of glutamate or aspartate was then tested as a metabolic substrate of P. gingivalis. P. gingivalis cells metabolized glutamylglutamate to butyrate, propionate, acetate, and ammonia, and they metabolized aspartylaspartate to butyrate, succinate, acetate, and ammonia. Based on the detection of metabolic enzymes in the cell extracts and stoichiometric calculations (carbon recovery and oxidation/reduction ratio) during dipeptide degradation, the following metabolic pathways were proposed. Incorporated glutamylglutamate and aspartylaspartate are hydrolyzed to glutamate and aspartate, respectively, by dipeptidase. Glutamate is deaminated and oxidized to succinyl-coenzyme A (CoA) by glutamate dehydrogenase and 2-oxoglutarate oxidoreductase. Aspartate is deaminated into fumarate by aspartate ammonia-lyase and then reduced to succinyl-CoA by fumarate reductase and acyl-CoA:acetate CoA-transferase or oxidized to acetyl-CoA by a sequential reaction of fumarase, malate dehydrogenase, oxaloacetate decarboxylase, and pyruvate oxidoreductase. The succinyl-CoA is reduced to butyryl-CoA by a series of enzymes, including succinate-semialdehyde dehydrogenase, 4-hydroxybutyrate dehydrogenase, and butyryl-CoA oxidoreductase. A part of succinyl-CoA could be converted to propionyl-CoA through the reactions initiated by methylmalonyl-CoA mutase. The butyryl- and propionyl-CoAs thus formed could then be converted into acetyl-CoA by acyl-CoA:acetate CoA-transferase with the formation of corresponding cytotoxic end products, butyrate and propionate. The formed acetyl-CoA could then be metabolized further to acetate.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1155
Author(s):  
Eva Garcia-Lopez ◽  
Paula Alcazar ◽  
Cristina Cid

Cold-loving microorganisms of all three domains of life have unique and special abilities that allow them to live in harsh environments. They have acquired structural and molecular mechanisms of adaptation to the cold that include the production of anti-freeze proteins, carbohydrate-based extracellular polymeric substances and lipids which serve as cryo- and osmoprotectants by maintaining the fluidity of their membranes. They also produce a wide diversity of pigmented molecules to obtain energy, carry out photosynthesis, increase their resistance to stress and provide them with ultraviolet light protection. Recently developed analytical techniques have been applied as high-throughoutput technologies for function discovery and for reconstructing functional networks in psychrophiles. Among them, omics deserve special mention, such as genomics, transcriptomics, proteomics, glycomics, lipidomics and metabolomics. These techniques have allowed the identification of microorganisms and the study of their biogeochemical activities. They have also made it possible to infer their metabolic capacities and identify the biomolecules that are parts of their structures or that they secrete into the environment, which can be useful in various fields of biotechnology. This Review summarizes current knowledge on psychrophiles as sources of biomolecules and the metabolic pathways for their production. New strategies and next-generation approaches are needed to increase the chances of discovering new biomolecules.


2004 ◽  
Vol 2004 (5) ◽  
pp. 264-271 ◽  
Author(s):  
Wei Zhang ◽  
Chris Franco ◽  
Chris Curtin ◽  
Simon Conn

Plant cells and tissue cultures hold great promise for controlled production of a myriad of useful secondary metabolites on demand. The current yield and productivity cannot fulfill the commercial goal of a plant cell-based bioprocess for the production of most secondary metabolites. In order to stretch the boundary, recent advances, new directions and opportunities in plant cell-based bioprocessing, have been critically examined for the 10 years from 1992 to 2002. A review of the literature indicated that most of the R&D work was devoted predominantly to studies at an empirical level. A rational approach to molecular plant cell bioprocessing based on the fundamental understanding of metabolic pathways and their regulations is urgently required to stimulate further advances; however, the strategies and technical framework are still being developed. It is the aim of this review to take a step forward in framing workable strategies and technologies for molecular plant cell-based bioprocessing. Using anthocyanin biosynthesis as a case study, an integrated postgenomic approach has been proposed. This combines the functional analysis of metabolic pathways for biosynthesis of a particular metabolite from profiling of gene expression and protein expression to metabolic profiling. A global correlation not only can thus be established at the three molecular levels, but also places emphasis on the interactions between primary metabolism and secondary metabolism; between competing and/or complimentary pathways; and between biosynthetic and post-biosynthetic events.


Author(s):  
Faith McCreary ◽  
Ray Reaux ◽  
Roger Ehrich ◽  
Susan Hood ◽  
Keith Rowland

Computers and network connectivity in the classroom raise new challenges in workspace design. Unlike corporate or dedicated laboratory facilities, a technology-rich classroom plays multiple roles throughout its working day. Classroom design demands flexible and robust construction, particularly when applied in an elementary school setting. Using the PCs for Families project as a case study, this paper discusses design issues of a technology-rich networked classroom from ergonomic design to system support.


Author(s):  
Matthew Wilding ◽  
Colin Scott ◽  
Thomas S. Peat ◽  
Janet Newman

The NAD-dependent malonate-semialdehyde dehydrogenase KES23460 fromPseudomonassp. strain AAC makes up half of a bicistronic operon responsible for β-alanine catabolism to produce acetyl-CoA. The KES23460 protein has been heterologously expressed, purified and used to generate crystals suitable for X-ray diffraction studies. The crystals belonged to space groupP212121and diffracted X-rays to beyond 3 Å resolution using the microfocus beamline of the Australian Synchrotron. The structure was solved using molecular replacement, with a monomer from PDB entry 4zz7 as the search model.


2009 ◽  
Vol 21 (4) ◽  
pp. 435-439 ◽  
Author(s):  
Denis Gebauer ◽  
Helmut Cölfen ◽  
Andreas Verch ◽  
Markus Antonietti

Reproduction ◽  
2021 ◽  
Vol 162 (3) ◽  
pp. 181-191
Author(s):  
Jessica Ispada ◽  
Aldcejam Martins da Fonseca Junior ◽  
Otávio Luiz Ramos Santos ◽  
Camila Bruna de Lima ◽  
Erika Cristina dos Santos ◽  
...  

Metabolic and molecular profiles were reported as different for bovine embryos with distinct kinetics during the first cleavages. In this study, we used this same developmental model (fast vs slow) to determine if the relationship between metabolism and developmental kinetics affects the levels of acetylation or tri-methylation at histone H3 lysine 9 (H3K9ac and H3K9me3, respectively). Fast and slow developing embryos presented different levels of H3K9ac and H3K9me3 from the earliest stages of development (40 and 96 hpi) and up to the blastocyst stage. For H3K9me3, both groups of embryos presented a wave of demethylation and de novo methylation, although it was more pronounced in fast than slow embryos, resulting in blastocysts with higher levels of this mark. The H3K9ac reprogramming profile was distinct between kinetics groups. While slow embryos presented a wave of deacetylation, followed by an increase in this mark at the blastocyst stage, fast embryos reduced this mark throughout all the developmental stages studied. H3K9me3 differences corresponded to writer and eraser transcript levels, while H3K9ac patterns were explained by metabolism-related gene expression. To verify if metabolic differences could alter levels of H3K9ac, embryos were cultured with sodium-iodoacetate (IA) or dichloroacetate (DCA) to disrupt the glycolytic pathway or increase acetyl-CoA production, respectively. IA reduced H3K9ac while DCA increased H3K9ac in blastocysts. Concluding, H3K9me3 and H3K9ac patterns differ between embryos with different kinetics, the second one explained by metabolic pathways involved in acetyl-CoA production. So far, this is the first study demonstrating a relationship between metabolic differences and histone post-translational modifications in bovine embryos.


2021 ◽  
Author(s):  
Hareram Birla ◽  
Chetan Keswani ◽  
Saumitra Sen Singh ◽  
Walia Zahra ◽  
Hagera Dilnashin ◽  
...  

Abstract Stress-induced dopaminergic (DAergic) neuronal death in the midbrain region is the primary cause of Parkinson’s disease (PD). From the discovery of L-dopa, multiple drugs were discovered to improve lifestyle of PD patients, but they failed due to their multiple side effects. Tinospora cordifolia (Tc), a medicinal herb has been used in traditional medicines to treat neurodegenerative diseases. In our previous study, the neuroprotective role of Tc against MPTP intoxicated Parkinsonian mice was reported. Here, we further explore the neuroprotective molecular mechanisms of Tc in Rotenone (ROT) intoxicated mouse model through proteomics approach. Mice were pretreated with Tc extract by oral administration, followed by ROT-intoxication. Behavioral tests were performed to check motor functions of mice. Protein was isolated, and label free quantification (LFQ) was carried out to identify differentially expressed protein (DEPs) in control vs. PD and PD vs. treatment group. In this study, we report 800 DEPs in control vs. PD and 133 in PD vs. Treatment group. In silico tools clearly demonstrate significant enrichment of biochemical and molecular pathways with DEPs which are known to be important for PD progression including mitochondrial gene expression, PD pathways, TGF-β signaling, Alzheimer’s disease etc. This results were further validated by qRT-PCR and found that the expression of target gene were identical to the proteomics data. This study provides a novel insight for the disease progression as well new therapeutic tagets. More importantly, it demonstrates that Tc exerts the therapeutic effects through the regulation of multiple pathways to protect DAergic neurons.


Author(s):  
Zhenhua Dang ◽  
Yuanyuan Jia ◽  
Yunyun Tian ◽  
Jiabin Li ◽  
Yanan Zhang ◽  
...  

Organisms have evolved effective and distinct adaptive strategies to survive. Stipa grandis is one of the widespread dominant species on the typical steppe of the Inner Mongolian Plateau, and is regarded as a suitable species for studying the effects of grazing in this region. Although phenotypic (morphological and physiological) variations in S. grandis in response to long-term grazing have been identified, the molecular mechanisms underlying adaptations and plastic responses remain largely unknown. Accordingly, we performed a transcriptomic analysis to investigate changes in gene expression of S. grandis under four different grazing intensities. A total of 2,357 differentially expressed genes (DEGs) were identified among the tested grazing intensities, suggesting long-term grazing resulted in gene expression plasticity that affected diverse biological processes and metabolic pathways in S. grandis. DEGs were identified that indicated modulation of Calvin–Benson cycle and photorespiration metabolic pathways. The key gene´expression profiles encoding various proteins (e.g., Ribulose-1,5-bisphosphate carboxylase/oxygenase, fructose-1,6-bisphosphate aldolase, glycolate oxidase etc.) involved in these pathways suggest that they may synergistically respond to grazing to increase the resilience and stress tolerance of S. grandis. Our findings provide scientific clues for improving grassland use and protection, and identify important questions to address in future transcriptome studies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xin Chen ◽  
Bo-lun Shi ◽  
Run-zhi Qi ◽  
Xing Chang ◽  
Hong-gang Zheng

Endogenous metabolites are a class of molecules playing diverse and significant roles in many metabolic pathways for disease. Honokiol (HNK), an active poly-phenolic compound, has shown potent anticancer activities. However, the detailed crucial mechanism regulated by HNK in colorectal cancer remains unclear. In the present study, we investigated the therapeutic effects and the underlying molecular mechanisms of HNK on colorectal cancer in a mouse model (ApcMin/+) by analyzing the urine metabolic profile based on metabolomics, which is a powerful tool for characterizing metabolic disturbances. We found that potential urine biomarkers were involved in the metabolism of compounds such as purines, tyrosines, tryptophans, etc. Moreover, we showed that a total of 27 metabolites were the most contribution biomarkers for intestinal tumors, and we found that the citrate cycle (TCA cycle) was regulated by HNK. In addition, it was suggested that the efficacy of HNK was achieved by affecting the multi-pathway system via influencing relevant metabolic pathways and regulating metabolic function. Our work also showed that high-throughput metabolomics can characterize the regulation of metabolic disorders as a therapeutic strategy to prevent colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document