scholarly journals Physical and Mechanical Properties of Fly Ash Based Geopolymer Concrete Compared to Conventional Concrete

Buildings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 178
Author(s):  
Nikolaos Nikoloutsopoulos ◽  
Anastasia Sotiropoulou ◽  
Glikeria Kakali ◽  
Sotirios Tsivilis

The potential of applying geopolymerization to a wide range of solid industrial waste and by-products is of great interest. In this research, the physical and mechanical properties of fly ash (FA)-based geopolymer concrete (GC), compared to those of cement concrete (CC), were studied. Three GCs with different content of FA and three appropriate CCs were designed, prepared, tested and evaluated. The results were compared with the requirements of Standards EN 206-1 and EN 1992-1-1. It was shown that in some cases minor adjustments of the regulations are needed, while in other cases complete revision is required. GC indicated competitive compressive strength compared to CC, tensile strength within the limits specified by Eurocode 2 for CC and modulus of elasticity about 50% less than that of CC. The ratio of binder (FA) to aggregates seems to have a significant effect on the properties of GC. The concrete with 750 kg/m3 FA seems to be the best choice taking into consideration both engineering and environmental criteria.

Trials has been made to produce efficient GPC which gives maximum strength. By-Products from industries such as Fly-Ash, Metakaolin and GGBS can be used in concrete replacement which in-turn reduces carbon-di-oxide (CO2 ) emission affecting to green house. Using the above said products also leads to reduction of water demand in concrete and also shows comparatively no effects on long term effects in concrete, these by-products can effectively be used in concrete production. The high silica content in Fly-Ash and Metakaolin increases the bonding in concrete which in-turn increases the mechanical properties of concrete. Geopolymer concrete of M50 grade was proposed to be produced using fly-ash and Metakaolin instead of cement.Alklai solutions Sodium Hydroxide (NaOH), Sodium Silicate (Na2SiO3) were replaced with water for better bonding and mixing. Molarity of Sodium Hydroxide with 10M and 12M was considered for this study. Ratio of Alkaline solution were considered as 1:2,1:2.5&1:3 to determine the optimum ratio which gives effective strength. In this experimental study, tests were carried on concrete specimens with percentage replacement of Fly-Ash with Buff Metakaolin in variable percentages of 20,40,60,80&100. Mechanical properties of concrete specimens were studied and were compared with control mix results.


2021 ◽  
Vol 27 (10) ◽  
pp. 50-67
Author(s):  
Sarah Sameer Hussein ◽  
Nada Mahdi Fawzi

In order to implement the concept of sustainability in the field of construction, it is necessary to find an alternative to the materials that cause pollution by manufacturing, the most important of which is cement. Because factory wastes provide siliceous and aluminous materials and contain calcium such as fly ash and slag that are used in the production of high-strength geopolymer concrete with specifications similar to ordinary concrete, it was necessary for developing this type of concrete that is helping to reduce CO2 (dioxide carbon) in the atmosphere. Therefore, the aim of this study was to study the influence of incorporating various percentages of slag as a replacement for fly ash and the effect of slag on mechanical properties. This paper showed the details of the experimental work that has been undertaken to search and make tests the strength of geopolymer mixtures made of fly ash and then replaced fly ash with slag in different percentages. The geopolymer mixes were prepared using a ground granulated blast-furnace slag (GGBFS) blend and low calcium fly ash class F activated by an alkaline solution. The mixture compositions of fly ash to slag were (0.75:0.25, 0.65:0.35, 0.55:0.45) by weight of cementitious materials respectively and compared with reference mix of conventional concrete with mix proportion 1:1.5:3 (cement: sand: coarse agg.), respectively. The copper fiber was used as recycled material from electricity devices wastes such as (machines, motors, wires, and electronic devices) to enhance the mechanical properties of geopolymer concrete. The heat curing system at 40 oC temperature was used. The results revealed that the mix proportion of 0.45 blast furnace slag and 0.55 fly ash produced the best strength results. It also showed that this mix ratio could provide a solution for the need for heat curing for fly ash-based geopolymer.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012184
Author(s):  
B Vijaya Prasad ◽  
N Anand ◽  
P D Arumairaj ◽  
M Sanath Kumar ◽  
T Dhilip ◽  
...  

Abstract Geopolymer concrete (GPC) is a Sustainable construction material, in which cement is completely replaced by Fly ash as binder. To control emission of CO2 during the production of cement, it is advisable to use alternate sustainable Cementitious material. The development of GPC become a major interest to use for in-situ and precast applications. The present study aims to develop High calcium fly ash based GPC with aid of alkaline liquids such as sodium Hydroxide (NaOH) and Sodium silicate (Na2SiO3). Different molarities i.e 4M, 6M, 8M and 10M are used to develop the GPC under ambient and oven curing process. In the present investigation the Fresh properties of GPC and Mechanical properties such as compressive strength, Tensile strength, Flexural strength and Elastic modulus of GPC are investigated. An increase of alkaline activator in in the mix decreased the workability of GPC. The developed GPC mix of 8M is found to be the optimum for gain in compressive strength. A polynomial relationship is obtained for the mechanical properties of GPC developed under ambient and oven curing. The development cost of GPC can be reduced up to 11.25 to 16.5% as compared with conventional concrete grade of M25.


Author(s):  
V. Bhikshma ◽  
T. Naveenkumar

Concrete plays an important role in the construction industry worldwide. New technology has made for easier development of new types of construction and alternative materials in the concrete area. Cement is the major component in the production of concrete, but its manufacture causes environmental issues and thus there is a need for alternative materials. Geopolymer concrete is a new type of material with that potential, commonly formed by alkali activation of industrial alumina silicate byproducts, such as fly ash and ground granulated blast furnace slag (GGBS). For this paper, mechanical properties of geopolymer concrete with fly ash and GGBS cured under ambient temperatures were studied. Five different grades of concrete were considered. The results were encouraging: The workability of the geopolymer concrete was similar to that of conventional concrete. Experimental results of flexural and splitting tensile strength revealed insignificant variation compared to conventional concrete. The mechanical properties of fly ash and GGBS-based geopolymer concrete were comparable with conventional concrete.


2006 ◽  
Vol 302-303 ◽  
pp. 314-320
Author(s):  
Yi Jin Li ◽  
Shi Qiong Zhou ◽  
Jian Yin ◽  
Jun Li

The subject of concrete recycling is regarded as very important in the general attempt for sustainable development in our times. Due to a wide range of variability of engineering properties for recycled concrete, a large number of experiments are usually required to decide a suitable mixture. Within the scope of this study, 13 different concrete mixtures were manufactured. The amount of recycled concrete aggregate (RCA) were 0 %, 20 %, 40 %, 60 %, 80 %, and 100 %, respectively. The replacement levels of ultra-fine fly ash are 0 %, 15 %, 25 %, 35 % and 50 %, respectively. The physical and mechanical properties along with their workability of concrete produced with RCA and ultra-fine fly ash were investigated. The experiment results showed that ultra-fine fly ash replacement had an important effect on performance of concrete with different amount of RCA.


2020 ◽  
pp. 39-48
Author(s):  
B. O. Bolshakov ◽  
◽  
R. F. Galiakbarov ◽  
A. M. Smyslov ◽  
◽  
...  

The results of the research of structure and properties of a composite compact from 13 Cr – 2 Мо and BN powders depending on the concentration of boron nitride are provided. It is shown that adding boron nitride in an amount of more than 2% by weight of the charge mixture leads to the formation of extended grain boundary porosity and finely dispersed BN layers in the structure, which provides a high level of wearing properties of the material. The effect of boron nitride concentration on physical and mechanical properties is determined. It was found that the introduction of a small amount of BN (up to 2 % by weight) into the compacts leads to an increase in plasticity, bending strength, and toughness by reducing the friction forces between the metal powder particles during pressing and a more complete grain boundary diffusion process during sintering. The formation of a regulated structure-phase composition of powder compacts of 13 Cr – 2 Mо – BN when the content of boron nitride changes in them allows us to provide the specified physical and mechanical properties in a wide range. The obtained results of studies of the physical and mechanical characteristics of the developed material allow us to reasonably choose the necessary composition of the powder compact for sealing structures of the flow part of steam turbines, depending on their operating conditions.


2021 ◽  
Vol 11 (15) ◽  
pp. 6740
Author(s):  
Rana Muhammad Waqas ◽  
Faheem Butt

Geopolymer concrete, also known as an earth-friendly concrete, has been under continuous study due to its environmental benefits and a sustainable alternative to conventional concrete construction. The supplies of many source materials, such as fly ash (FA) or slag (SG), to produce geopolymer concrete (GPC) may be limited; however, quarry rock dust (QRD) wastes (limestone, dolomite, or silica powders) formed by crushing rocks appear virtually endless. Although significant experimental research has been carried out on GPC, with a major focus on the mix design development, rheological, durability, and mechanical properties of the GPC mixes; still the information available on the structural behavior of GPC is rather limited. This has implications in extending GPC application from a laboratory-based technology to an at-site product. This study investigates the structural behavior of quarry-rock-dust-incorporated fiber-reinforced GPC columns under concentric and eccentric loading. In this study, a total of 20 columns with 200 mm square cross-section and 1000 mm height were tested. The FA and SG were used as source materials to produce GPC mixtures. The QRD was incorporated as a partial replacement (20%) of SG. The conventional concrete (CC) columns were prepared as the reference specimens. The effect of incorporating quarry rock dust as a replacement of SG, steel fibers, and loading conditions (concentric and eccentric loading) on the structural behavior of GPC columns were studied. The test results revealed that quarry rock dust is an adequate material that can be used as a source material in GPC to manufacture structural concrete members with satisfactory performance. The general performance of the GPC columns incorporating QRD (20%) is observed to be similar to that of GPC columns (without QRD) and CC columns. The addition of steel fibers considerably improves the loading capacity, ductility, and axial load–displacement behavior of the tested columns. The load capacities of fiber-reinforced GPC columns were about 5–7% greater in comparison to the CC columns. The spalling of concrete cover at failure was detected in all plain GPC columns, whereas the failure mode of all fiber-reinforced GPC columns is characterized with surface cracking leading to disintegration of concrete cover.


2021 ◽  
Vol 11 (7) ◽  
pp. 3032
Author(s):  
Tuan Anh Le ◽  
Sinh Hoang Le ◽  
Thuy Ninh Nguyen ◽  
Khoa Tan Nguyen

The use of fluid catalytic cracking (FCC) by-products as aluminosilicate precursors in geopolymer binders has attracted significant interest from researchers in recent years owing to their high alumina and silica contents. Introduced in this study is the use of geopolymer concrete comprising FCC residue combined with fly ash as the requisite source of aluminosilicate. Fly ash was replaced with various FCC residue contents ranging from 0–100% by mass of binder. Results from standard testing methods showed that geopolymer concrete rheological properties such as yield stress and plastic viscosity as well as mechanical properties including compressive strength, flexural strength, and elastic modulus were affected significantly by the FCC residue content. With alkali liquid to geopolymer solid ratios (AL:GS) of 0.4 and 0.5, a reduction in compressive and flexural strength was observed in the case of geopolymer concrete with increasing FCC residue content. On the contrary, geopolymer concrete with increasing FCC residue content exhibited improved strength with an AL:GS ratio of 0.65. Relationships enabling estimation of geopolymer elastic modulus based on compressive strength were investigated. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) patterns revealed that the final product from the geopolymerization process consisting of FCC residue was similar to fly ash-based geopolymer concrete. These observations highlight the potential of FCC residue as an aluminosilicate source for geopolymer products.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1473
Author(s):  
Jun Zhao ◽  
Kang Wang ◽  
Shuaibin Wang ◽  
Zike Wang ◽  
Zhaohui Yang ◽  
...  

This paper presents results from experimental work on mechanical properties of geopolymer concrete, mortar and paste prepared using fly ash and blended slag. Compressive strength, splitting tensile strength and flexural strength tests were conducted on large sets of geopolymer and ordinary concrete, mortar and paste after exposure to elevated temperatures. From Thermogravimetric analyzer (TGA), X-ray diffraction (XRD), Scanning electron microscope (SEM) test results, the geopolymer exhibits excellent resistance to elevated temperature. Compressive strengths of C30, C40 and C50 geopolymer concrete, mortar and paste show incremental improvement then followed by a gradual reduction, and finally reach a relatively consistent value with an increase in exposure temperature. The higher slag content in the geopolymer reduces residual strength and the lower exposure temperature corresponding to peak residual strength. Resistance to elevated temperature of C40 geopolymer concrete, mortar and paste is better than that of ordinary concrete, mortar and paste at the same grade. XRD, TGA and SEM analysis suggests that the heat resistance of C–S–H produced using slag is lower than that of sulphoaluminate gel (quartz and mullite, etc.) produced using fly ash. This facilitates degradation of C30, C40 and C50 geopolymer after exposure to elevated temperatures.


Sign in / Sign up

Export Citation Format

Share Document