scholarly journals Behaviour of Lightweight Concrete Wall Panel under Axial Loading: Experimental and Numerical Investigation toward Sustainability in Construction Industry

Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 620
Author(s):  
Muhammad Ekhlasur Rahman ◽  
Timothy Zhi Hong Ting ◽  
Hieng Ho Lau ◽  
Brabha Nagaratnam ◽  
Keerthan Poologanathan

Awareness of sustainability in construction has led to the utilization of waste material such as oil palm shell (OPS) in concrete production. The feasibility of OPS as alternative aggregates in concrete has been widely studied at the material level. Meanwhile, nonlinear concrete material properties are not taken into account in the conventional concrete wall design equations, resulting in underestimation of lightweight concrete’s wall axial capacity. Against these sustainability and technical contexts, this research investigated the buckling behavior of OPS-based lightweight self-compacting concrete (LWSCC) wall. Failure mode, load-deflection responses, and ultimate strength were assessed experimentally. Numerical models have been developed and validated against experimental results. Parametric studies were conducted to study the influence of parameters like slenderness ratio, eccentricity, compressive strength, and elastic modulus. The results showed that the axial strength of concrete wall was very much dependent on these parameters. A generalized semi-empirical design equation, based on equivalent concrete stress block and modified by mathematical regression, has been proposed. The ratio of average calculated results to test results of the proposed equation, when compared to ACI 318, AS 3600, and Eurocode 2 equations, are respectively improved from 0.36, 0.31, and 0.42 to 0.97. This research demonstrates that OPS-based LWSCC concrete can be used for structural axial components and that the equation developed can serve a good guideline for its design, which could encourage automation and promote sustainability in the construction industry.

Cerâmica ◽  
2017 ◽  
Vol 63 (368) ◽  
pp. 530-535
Author(s):  
Z. L. M. Sampaio ◽  
A. E. Martinelli ◽  
T. S. Gomes

Abstract The recent increase in the construction industry has transformed concrete into an ideal choice to recycle a number of residues formerly discarded into the environment. Among various products, porcelain tile polishing, limestone and tire rubber residues are potential candidates to replace the fine aggregate of conventional mixtures. The aim of this study was to investigate the effect of the addition of varying contents of these residues in lightweight concrete where expanded clay replaced gravel. To that end, slump, compressive strength, density, void ratio, porosity and absorption tests were carried out. The densities of all concrete formulations studied were 10% lower to that of lightweight concrete (<1.850 kg/m³). Nevertheless, mixes containing 10 to 15% of combined residues reduced absorption, void ratio and porosity, at least 17% lower compared to conventional concrete. The strength of such formulations reached 27 MPa at 28 days with consistency of 9 to 12 cm, indicating adequate consistency and increased strength. In addition, the combination of low porosity, absorption and voids suggested improved durability.


2015 ◽  
Vol 76 (10) ◽  
Author(s):  
Rohana Mamat ◽  
Siti Hawa Hamzah ◽  
Jamilah Abd. Rahim

Steel Fibre Expanded Polystyrene Concrete (SFEPS) wall panel is envisaged as load bearing walls, although it is lightweight by design. The performance of this wall is investigated, incorporating opening to fulfil the demand for ventilation and services conduits or equipments. It focused on the buckling behaviour by comparing the carrying load capacities and deformation profiles of wall panel with and without opening. Primarily, the samples were cast from concrete mixed with expanded polystyrene (EPS) beads, enhanced with hooked end round shaft steel fibre and reinforced with a single layer rectangular steel fabric (BRC) of size B9. The wall panel size is 2000 mm in height (limited due to testing frame allowable height), 1500 mm wide and 100 mm thick which gives the slenderness ratio of 15. The wall falls under the slender wall category for lightweight concrete since the slenderness ratio is greater than 10 [1]. A central opening with a size of 600 mm high by 600 mm wide is created to accommodate the opening criterion. Experimental tests were conducted simulating fixed ends condition. The average compressive strength of SFEPS, fcu is 20.87 N/mm2 with a density, ρ of 1900 kg/m3. These lightweight SFEPS wall panels sustained load between 958.0 kN and 1938.9 kN. Wall panels experienced maximum displacement of 22.3 mm at midheight. The wall panels failed in buckling as it should be for slender wall. There was also concrete crushing at the upper and lower ends of the panels. The SFEPS wall panel is suitable to be used as load bearing structures.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 920
Author(s):  
Chukwuma Ogbonnaya ◽  
Chamil Abeykoon ◽  
Adel Nasser ◽  
Ali Turan

A system of transcendental equations (SoTE) is a set of simultaneous equations containing at least a transcendental function. Solutions involving transcendental equations are often problematic, particularly in the form of a system of equations. This challenge has limited the number of equations, with inter-related multi-functions and multi-variables, often included in the mathematical modelling of physical systems during problem formulation. Here, we presented detailed steps for using a code-based modelling approach for solving SoTEs that may be encountered in science and engineering problems. A SoTE comprising six functions, including Sine-Gordon wave functions, was used to illustrate the steps. Parametric studies were performed to visualize how a change in the variables affected the superposition of the waves as the independent variable varies from x1 = 1:0.0005:100 to x1 = 1:5:100. The application of the proposed approach in modelling and simulation of photovoltaic and thermophotovoltaic systems were also highlighted. Overall, solutions to SoTEs present new opportunities for including more functions and variables in numerical models of systems, which will ultimately lead to a more robust representation of physical systems.


2021 ◽  
Vol 11 (13) ◽  
pp. 6094
Author(s):  
Hubdar Hussain ◽  
Xiangyu Gao ◽  
Anqi Shi

In this study, detailed finite element analysis was conducted to examine the seismic performance of square and circular hollow steel braces under axial cyclic loading. Finite element models of braces were constructed using ABAQUS finite element analysis (FEA) software and validated with experimental results from previous papers to expand the specimen’s matrix. The influences of cross-section shape, slenderness ratio, and width/diameter-to-thickness ratio on hysteretic behavior and compressive-tensile strength degradation were studied. Simulation results of parametric studies show that both square and circular hollow braces have a better cyclic performance with smaller slenderness and width/diameter-to-thickness ratios, and their compressive-tensile resistances ratio significantly decreases from cycle to cycle after the occurrence of the global buckling of braces.


2013 ◽  
Vol 687 ◽  
pp. 185-190 ◽  
Author(s):  
Masoud Jamshidi ◽  
Mohammad Javad Ghasemi ◽  
Abdolreza Hashemi

Polymer concretes (PC) were introduced to building and construction industry more than 50 years ago. Gradually, they became a suitable substitute for concrete structures. Their superior properties againt aggresives introduced them as a good overlay for concrete structures; however, their application was shortly diminished due to the higher costs. In this research a homemade cost-quality effective resin (unsaturated polyester) is used as binder in the polymer concrete production. Polymer concrete specimens were evaluated for compressive strength and its fluctuation due to cyclic exposure to different aggresive solutions (sulfuric acid, nitric acid, citric acid, chloridric acid, sodum sulfate, water, demineralized water, sodium hydroxid, potasium hydroxid and gas oil). It was found that PC specimens degraded more in alkali conditioned in comparison to acid solutions.


Author(s):  
Hesham A. Haggag ◽  
Nagy F. Hanna ◽  
Ghada G. Ahmed

The axial strength of reinforced concrete columns is enhanced by wrapping them with Fiber Reinforced Polymers, FRP, fabrics.  The efficiency of such enhancement is investigated for columns when they are subjected to repeated lateral loads accompanied with their axial loading.  The current research presents that investigation for Glass and Carbon Fiber Reinforced Polymers (GFRP and CFRP) strengthening as well.  The reduction of axial loading capacity due to repeated loads is evaluated. The number of applied FRP plies with different types (GFRP or CFRP) are considered as parameters in our study. The study is evaluated experimentally and numerically.  The numerical investigation is done using ANSYS software. The experimental testing are done on five half scale reinforced concrete columns.  The loads are applied into three stages. Axial load are applied on specimen in stage 1 with a value of 30% of the ultimate column capacity. In stage 2, the lateral loads are applied in repeated manner in the existence of the vertical loads.  In the last stage the axial load is continued till the failure of the columns. The final axial capacities after applying the lateral action, mode of failure, crack patterns and lateral displacements are recorded.   Analytical comparisons for the analyzed specimens with the experimental findings are done.  It is found that the repeated lateral loads decrease the axial capacity of the columns with a ratio of about (38%-50%).  The carbon fiber achieved less reduction in the column axial capacity than the glass fiber.  The column confinement increases the ductility of the columns under the lateral loads.


This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


2019 ◽  
Vol 10 (1) ◽  
pp. 12-21
Author(s):  
Abebe Demissew ◽  
Fekadu Fufa ◽  
Sintayehu Assefa

Concrete is a mixture of aggregates and binders. From concrete ingredients, the binder and the costliest and environmental-unfriendly element is cement, which is an ecological unsociable process due to the discharge of CO2 gas into the atmosphere and ecological degradation. Coffee husk (CH) has been considered as a category of agriculture by-product; as its quantity rises, the disposal of it is becoming an environmental problem. Hence, this study investigated the suitability of coffee husk ash (CHA) as a partial replacement for ordinary Portland cement (OPC) in conventional concrete production. Initially, CH samples were collected from different coffee treatment centres. The CHA was then ground and its chemical and physical properties were investigated using Atomic Absorption Spectrophotometer method. After that, the pastes containing OPC and CHA at different levels of replacement were investigated. For this purpose, six different concrete mixes with CHA replacement 0, 2, 3, 5, 10, and 15% of the OPC were prepared for 25MPa conventional concrete with water to cement ratio of 0.5 and 360 kg/m3 cement content. The results of the study show that, up to 10% replacement of OPC by CHA achieved advanced compressive strength at all test ages, i.e. 7, 14, and 28 days of age using compressive test machine.


2016 ◽  
Vol 847 ◽  
pp. 38-45
Author(s):  
Xian Yan Zhou ◽  
Dan Zeng ◽  
Zhi Feng Wang

At present, the relevant researches of Glulam columns in China are mainly restricted to short columns. In order to study the mechanical properties of long columns under axial loading, an experimental study on five different slenderness ratios of Larch Glulam columns was carried out. With slenderness ratio changing, the variations of experimental data such as axial strain, lateral deflection at mid-height, ultimate bearing capacity, and peak strain were comparatively analyzed. The failure pattern and failure mechanism of long columns were discussed. The results indicate that the ultimate bearing capacity of Larch Glulam columns gradually decreases as the slenderness radio increases and the failure mode is gradually converted from strength failure to instability failure. The ultimate load reduction factor is obtained by regression analysis based on the experiment results of Larch Glulam short columns. The basis for design and application of Larch Glulam columns are provided.


Sign in / Sign up

Export Citation Format

Share Document