scholarly journals The Multiple Roles and Therapeutic Potential of Molecular Chaperones in Prostate Cancer

Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1194 ◽  
Author(s):  
Hoter ◽  
Rizk ◽  
Naim

Prostate cancer (PCa) is one of the most common cancer types in men worldwide. Heat shock proteins (HSPs) are molecular chaperones that are widely implicated in the pathogenesis, diagnosis, prognosis, and treatment of many cancers. The role of HSPs in PCa is complex and their expression has been linked to the progression and aggressiveness of the tumor. Prominent chaperones, including HSP90 and HSP70, are involved in the folding and trafficking of critical cancer-related proteins. Other members of HSPs, including HSP27 and HSP60, have been considered as promising biomarkers, similar to prostate-specific membrane antigen (PSMA), for PCa screening in order to evaluate and monitor the progression or recurrence of the disease. Moreover, expression level of chaperones like clusterin has been shown to correlate directly with the prostate tumor grade. Hence, targeting HSPs in PCa has been suggested as a promising strategy for cancer therapy. In the current review, we discuss the functions as well as the role of HSPs in PCa progression and further evaluate the approach of inhibiting HSPs as a cancer treatment strategy.

2019 ◽  
Vol 20 (14) ◽  
pp. 1181-1193 ◽  
Author(s):  
Aref Shariati ◽  
Hamid R. Aslani ◽  
Mohammad R.H. Shayesteh ◽  
Ali Taghipour ◽  
Ahmad Nasser ◽  
...  

Celiac Disease (CD) is a complex autoimmune enteropathy of the small intestine that commonly occurs in genetically predisposed individuals due to intake of gluten and related proteins. Gluten consumption, duration of breast-feeding, various infections, especially frequent intestinal infections, vaccinations and use of antibiotics can be linked to CD. It is predicted that it affects 1% of the global population and its incidence rate is increasing. Most of the people with the HLA-DQ2 or HLADQ8 are at a higher risk of developing this disease. The link between infections and autoimmune diseases has been very much considered in recent years. In several studies, we explained that pathogenic and non-pathogenic microorganisms might have multiple roles in initiation, exacerbation, and development of Irritable Bowel Syndrome (IBS) and Inflammatory Bowel Disease (IBD). In various studies, the relationship between infections caused by viruses, such as Epstein-Barr Virus (EBV), Rotavirus, Hepatitis C (HCV), Hepatitis B virus (HBV), Cytomegalovirus (CMV), and Influenza virus, and parasites including Giardia spp. and Toxoplasma gondii with CD has been raised. However, increasing evidence proposes that some of these microorganisms, especially helminths, can also have protective and even therapeutic roles in the CD process. Therefore, in order to determine the role of microorganisms in the process of this disease, we attempted to summarize the evidence suggesting the role of viral and parasitic agents in pathogenesis of CD.


Biologia ◽  
2013 ◽  
Vol 68 (4) ◽  
Author(s):  
Zhennan Zhang ◽  
Bo Wang ◽  
Dongmei Sun ◽  
Xin Deng

AbstractSmall heat shock proteins (sHSPs) are a class of molecular chaperones that bind to and prevent aggregation of proteins. To assess the potential role of sHSPs in protection against abiotic stresses, we conducted a screening of sHSP genes from the desiccation-tolerant resurrection plant Boea hygrometrica, which is widespread in East Asia in alkaline, calcium-rich limestone crevices. In total, 25 sHSP genes, belonging to six subgroups, were identified from the desiccated leaves of B. hygrometrica. Ten of these genes were cloned and named according to the nomenclature proposed for sHSPs. Transcripts of all these BhsHSPs were detectable in fresh leaves, but only 6 genes were induced after desiccation, and remained high during rehydration. Four of the cytosol-targeted BhsHSP genes were up-regulated under treatments, such as heat, cold, alkaline conditions, high calcium, oxidation, or application of the phytohormone abscisic acid. Together, these results demonstrate that CI and CII sHSPs, especially Bh17.9CI and Bh17.4BCII, are associated with abiotic stresses, and may function in the maintenance of protein stability, aiding in the adaptations to extreme environmental conditions in which B. hygrometrica can survive.


2009 ◽  
Vol 181 (2) ◽  
pp. 594-600 ◽  
Author(s):  
Alberto A. Antunes ◽  
Kátia R. Leite ◽  
Juliana M. Sousa-Canavez ◽  
Luiz H. Camara-Lopes ◽  
Miguel Srougi

2018 ◽  
Vol 19 (9) ◽  
pp. 2603 ◽  
Author(s):  
Claudia Campanella ◽  
Andrea Pace ◽  
Celeste Caruso Bavisotto ◽  
Paola Marzullo ◽  
Antonella Marino Gammazza ◽  
...  

Among diseases whose cure is still far from being discovered, Alzheimer’s disease (AD) has been recognized as a crucial medical and social problem. A major issue in AD research is represented by the complexity of involved biochemical pathways, including the nature of protein misfolding, which results in the production of toxic species. Considering the involvement of (mis)folding processes in AD aetiology, targeting molecular chaperones represents a promising therapeutic perspective. This review analyses the connection between AD and molecular chaperones, with particular attention toward the most important heat shock proteins (HSPs) as representative components of the human chaperome: Hsp60, Hsp70 and Hsp90. The role of these proteins in AD is highlighted from a biological point of view. Pharmacological targeting of such HSPs with inhibitors or regulators is also discussed.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1887 ◽  
Author(s):  
Francesco Bonollo ◽  
George N. Thalmann ◽  
Marianna Kruithof-de Julio ◽  
Sofia Karkampouna

Tumors strongly depend on their surrounding tumor microenvironment (TME) for growth and progression, since stromal elements are required to generate the optimal conditions for cancer cell proliferation, invasion, and possibly metastasis. Prostate cancer (PCa), though easily curable during primary stages, represents a clinical challenge in advanced stages because of the acquisition of resistance to anti-cancer treatments, especially androgen-deprivation therapies (ADT), which possibly lead to uncurable metastases such as those affecting the bone. An increasing number of studies is giving evidence that prostate TME components, especially cancer-associated fibroblasts (CAFs), which are the most abundant cell type, play a causal role in PCa since the very early disease stages, influencing therapy resistance and metastatic progression. This is highlighted by the prognostic value of the analysis of stromal markers, which may predict disease recurrence and metastasis. However, further investigations on the molecular mechanisms of tumor–stroma interactions are still needed to develop novel therapeutic approaches targeting stromal components. In this review, we report the current knowledge of the characteristics and functions of the stroma in prostate tumorigenesis, including relevant discussion of normal prostate homeostasis, chronic inflammatory conditions, pre-neoplastic lesions, and primary and metastatic tumors. Specifically, we focus on the role of CAFs, to point out their prognostic and therapeutic potential in PCa.


2019 ◽  
Vol 20 (18) ◽  
pp. 4507 ◽  
Author(s):  
Lang ◽  
Guerrero-Giménez ◽  
Prince ◽  
Ackerman ◽  
Bonorino ◽  
...  

Heat shock protein (HSP) synthesis is switched on in a remarkably wide range of tumor cells, in both experimental animal systems and in human cancer, in which these proteins accumulate in high levels. In each case, elevated HSP concentrations bode ill for the patient, and are associated with a poor outlook in terms of survival in most cancer types. The significance of elevated HSPs is underpinned by their essential roles in mediating tumor cell intrinsic traits such as unscheduled cell division, escape from programmed cell death and senescence, de novo angiogenesis, and increased invasion and metastasis. An increased HSP expression thus seems essential for tumorigenesis. Perhaps of equal significance is the pronounced interplay between cancer cells and the tumor milieu, with essential roles for intracellular HSPs in the properties of the stromal cells, and their roles in programming malignant cells and in the release of HSPs from cancer cells to influence the behavior of the adjacent tumor and infiltrating the normal cells. These findings of a triple role for elevated HSP expression in tumorigenesis strongly support the targeting of HSPs in cancer, especially given the role of such stress proteins in resistance to conventional therapies.


2019 ◽  
Vol 40 (5) ◽  
pp. 633-642 ◽  
Author(s):  
Divya Bhagirath ◽  
Thao Ly Yang ◽  
Z Laura Tabatabai ◽  
Varahram Shahryari ◽  
Shahana Majid ◽  
...  

Abstract The prostate cancer (PCa) genome is characterized by deletions of chromosome 8p21–22 region that increase significantly with tumor grade and are associated with poor prognosis. We proposed and validated a novel, paradigm-shifting hypothesis that this region is associated with a set of microRNA genes—miR-3622, miR-3622b, miR-383—that are lost in PCa and play important mechanistic roles in PCa progression and metastasis. Extending our hypothesis, in this study, we evaluated the role of a microRNA gene located in chromosome 8p—miR-4288—by employing clinical samples and cell lines. Our data suggests that (i) miR-4288 is widely downregulated in primary prostate tumors and cell lines; (ii) miR-4288 expression is lost in metastatic castration-resistant PCa; (ii) miR-4288 downregulation is race-related PCa alteration that is prevalent in Caucasian patients and not in African Americans; (iii) in Caucasians, miR-4288 was found to be associated with increasing tumor grade and high serum prostate-specific antigen, suggesting that miR-4288 downregulation/loss may be associated with tumor progression specifically in Caucasians; (iv) miR-4288 possess significant potential as a molecular biomarker to predict aggressiveness/metastasis; and (v) miR-4288 is anti-proliferative, is anti-invasive and inhibits epithelial-to-mesenchymal transition; and (vi) miR-4288 directly represses expression of metastasis/invasion-associated genes MMP16 and ROCK1. Thus, the present study demonstrates a tumor suppressor role for a novel miRNA located with a frequently lost region in PCa, strengthening our hypothesis that this locus is causally related to PCa disease progression via loss of microRNA genes. Our study suggests that miR-4288 may be a novel biomarker and therapeutic target, particularly in Caucasians.


Sign in / Sign up

Export Citation Format

Share Document