scholarly journals Ovatodiolide Suppresses Oral Cancer Malignancy by Down-Regulating Exosomal Mir-21/STAT3/β-Catenin Cargo and Preventing Oncogenic Transformation of Normal Gingival Fibroblasts

Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 56 ◽  
Author(s):  
Jia-Hong Chen ◽  
Alexander T. H. Wu ◽  
Oluwaseun Adebayo Bamodu ◽  
Vijesh Kumar Yadav ◽  
Tsu-Yi Chao ◽  
...  

Oral squamous cell carcinoma (OSCC) is among the most commonly diagnosed malignancies in the world. Patients with OSCC often develop treatment resistance, resulting in a poor prognosis. Mounting evidence indicates that interactions between cancerous cells and other components of the tumor microenvironment (TME) determine their response to treatment. Herein, we examined the role of cancer stem cell-derived extracellular vesicles (CSC_EVs) generated from CAL27 and SCC-15 OSCC cells in the development of cisplatin (CDDP) resistance. We demonstrated that CSC_EVs enhance CDDP resistance, clonogenicity, and the tumorsphere formation potential of OSCC cells. Our bioinformatics analyses revealed that OSCC_EVs are enriched with microRNA (miR)-21-5p and are associated with increased metastasis, stemness, chemoresistance, and poor survival in patients with OSCC. Mechanistically, enhanced activity of CSC_EVs was positively correlated with upregulated β-catenin, phosphatidylinositol-3 kinase (PI3K), signal transducer and activator of transcription 3 (STAT3), mammalian target of rapamycin (mTOR), and transforming growth factor (TGF)-β1 messenger (m)RNA and protein expression levels. CSC_EVs also conferred a cancer-associated fibroblast (CAF) phenotype on normal gingival fibroblasts (NGFs), with the resultant CAFs enhancing the oncogenicity of OSCC cells. Interestingly, treatment with ovatodiolide (OV), the bioactive component of Anisomeles indica, suppressed OSCC tumorigenesis by reducing the cargo content of EVs derived from CSCs, suppressing self-renewal, and inhibiting the NGF-CAF transformation by disrupting EV-TME interactions. Moreover, by suppressing miR-21-5p, STAT3, and mTOR expressions in CSC_EVs, OV re-sensitized CSCs to CDDP and suppressed OSCC tumorigenesis. In vivo, treatment with OV alone or in combination with CDDP significantly reduced the tumor sphere-forming ability and decreased EV cargos containing mTOR, PI3K, STAT3, β-catenin, and miR-21-5p. In summary, our findings provide further strong evidence of OV’s therapeutic effect in OSCC.

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2391
Author(s):  
Alexander T. H. Wu ◽  
Hsu-Shan Huang ◽  
Ya-Ting Wen ◽  
Bashir Lawal ◽  
Ntlotlang Mokgautsi ◽  
...  

Glioblastoma (GBM) is one of the most aggressive brain malignancies with high incidences of developing treatment resistance, resulting in poor prognoses. Glioma stem cell (GSC)-derived exosomes are important players that contribute to GBM tumorigenesis and aggressive properties. Herein, we investigated the inhibitory roles of GBM-N019, a novel small molecule on the transfer of aggressive and invasive properties through the delivery of oncogene-loaded exosomes from GSCs to naïve and non-GSCs. Our results indicated that GBM-N019 significantly downregulated the expressions of the mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3), and cyclin-dependent kinase 6 (CDK6) signaling networks with concomitant inhibitory activities against viability, clonogenicity, and migratory abilities of U251 and U87MG cells. Treatments with GBM-N019 halted the exosomal transfer of protein kinase B (Akt), mTOR, p-mTOR, and Ras-related protein RAB27A to the naïve U251 and U87MG cells, and rescued the cells from invasive and stemness properties that were associated with activation of these oncogenes. GBM-N019 also synergized with and enhanced the anti-GBM activities of palbociclib in vitro and in vivo. In conclusion, our results suggested that GBM-N019 possesses good translational relevance as a potential anti-glioblastoma drug candidate worthy of consideration for clinical trials against recurrent glioblastomas.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shu-xian Li ◽  
Chao Li ◽  
Xin-ru Pang ◽  
Juan Zhang ◽  
Gong-chang Yu ◽  
...  

Long-term exposure to crystalline silica particles leads to silicosis characterized by persistent inflammation and progressive fibrosis in the lung. So far, there is no specific treatment to cure the disease other than supportive care. In this study, we examined the effects of metformin, a prescribed drug for type || diabetes on silicosis and explored the possible mechanisms in an established rat silicosis model in vivo, and an in vitro co-cultured model containing human macrophages cells (THP-1) and human bronchial epithelial cells (HBEC). Our results showed that metformin significantly alleviated the inflammation and fibrosis of lung tissues of rats exposed to silica particles. Metformin significantly reduced silica particle-induced inflammatory cytokines including transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in rat lung tissue and HBEC culture supernatant. The protein levels of Vimentin and α-smooth muscle actin (α-SMA) were significantly decreased by metfomin while expression level of E-cadherin (E-Cad) increased. Besides, metformin increased the expression levels of phosphorylated adenosine 5′-monophosphate (AMP)-activated protein kinase (p-AMPK), microtubule-associated protein (MAP) light chain 3B (LC3B) and Beclin1 proteins, and reduced levels of phosphorylated mammalian target of rapamycin (p-mTOR) and p62 proteins in vivo and in vitro. These results suggest that metformin could inhibit silica-induced pulmonary fibrosis by activating autophagy through the AMPK-mTOR pathway.


2009 ◽  
Vol 296 (6) ◽  
pp. C1248-C1257 ◽  
Author(s):  
Roberta Sartori ◽  
Giulia Milan ◽  
Maria Patron ◽  
Cristina Mammucari ◽  
Bert Blaauw ◽  
...  

Loss of muscle mass occurs in a variety of diseases, including cancer, chronic heart failure, aquired immunodeficiency syndrome, diabetes, and renal failure, often aggravating pathological progression. Preventing muscle wasting by promoting muscle growth has been proposed as a possible therapeutic approach. Myostatin is an important negative modulator of muscle growth during myogenesis, and myostatin inhibitors are attractive drug targets. However, the role of the myostatin pathway in adulthood and the transcription factors involved in the signaling are unclear. Moreover, recent results confirm that other transforming growth factor-β (TGF-β) members control muscle mass. Using genetic tools, we perturbed this pathway in adult myofibers, in vivo, to characterize the downstream targets and their ability to control muscle mass. Smad2 and Smad3 are the transcription factors downstream of myostatin/TGF-β and induce an atrophy program that is muscle RING-finger protein 1 (MuRF1) independent. Furthermore, Smad2/3 inhibition promotes muscle hypertrophy independent of satellite cells but partially dependent of mammalian target of rapamycin (mTOR) signaling. Thus myostatin and Akt pathways cross-talk at different levels. These findings point to myostatin inhibitors as good drugs to promote muscle growth during rehabilitation, especially when they are combined with IGF-1-Akt activators.


2020 ◽  
Vol 7 (3) ◽  
pp. e694 ◽  
Author(s):  
Xavier Suárez-Calvet ◽  
Jorge Alonso-Pérez ◽  
Ivan Castellví ◽  
Ana Carrasco-Rozas ◽  
Esther Fernández-Simón ◽  
...  

ObjectiveTo describe the clinical, serologic and histologic features of a cohort of patients with brachio-cervical inflammatory myopathy (BCIM) associated with systemic sclerosis (SSc) and unravel disease-specific pathophysiologic mechanisms occurring in these patients.MethodsWe reviewed clinical, immunologic, muscle MRI, nailfold videocapillaroscopy, muscle biopsy, and response to treatment data from 8 patients with BCIM-SSc. We compared cytokine profiles between patients with BCIM-SSc and SSc without muscle involvement and controls. We analyzed the effect of the deregulated cytokines in vitro (fibroblasts, endothelial cells, and muscle cells) and in vivo.ResultsAll patients with BCIM-SSc presented with muscle weakness involving cervical and proximal muscles of the upper limbs plus Raynaud syndrome, telangiectasia and/or sclerodactilia, hypotonia of the esophagus, and interstitial lung disease. Immunosuppressive treatment stopped the progression of the disease. Muscle biopsy showed pathologic changes including the presence of necrotic fibers, fibrosis, and reduced capillary number and size. Cytokines involved in inflammation, angiogenesis, and fibrosis were deregulated. Thrombospondin-1 (TSP-1), which participates in all these 3 processes, was upregulated in patients with BCIM-SSc. In vitro, TSP-1 and serum of patients with BCIM-SSc promoted proliferation and upregulation of collagen, fibronectin, and transforming growth factor beta in fibroblasts. TSP-1 disrupted vascular network, decreased muscle differentiation, and promoted hypotrophic myotubes. In vivo, TSP-1 increased fibrotic tissue and profibrotic macrophage infiltration in the muscle.ConclusionsPatients with SSc may present with a clinically and pathologically distinct myopathy. A prompt and correct diagnosis has important implications for treatment. Finally, TSP-1 may participate in the pathologic changes observed in muscle.


2010 ◽  
Vol 298 (1) ◽  
pp. F142-F149 ◽  
Author(s):  
Shinong Wang ◽  
Mark C. Wilkes ◽  
Edward B. Leof ◽  
Raimund Hirschberg

Renal interstitial fibrosis is a major determinant of renal failure in the majority of chronic renal diseases. Transforming growth factor-β (TGF-β) is the single most important cytokine promoting renal fibrogenesis. Recent in vitro studies identified novel non-smad TGF-β targets including p21-activated kinase-2 (PAK2), the abelson nonreceptor tyrosine kinase (c-Abl), and the mammalian target of rapamycin (mTOR) that are activated by TGF-β in mesenchymal cells, specifically in fibroblasts but less in epithelial cells. In the present studies, we show that non-smad effectors of TGF-β including PAK2, c-Abl, Akt, tuberin (TSC2), and mTOR are activated in experimental unilateral obstructive nephropathy in rats. Treatment with c-Abl or mTOR inhibitors, imatinib mesylate and rapamycin, respectively, each blocks noncanonical (non-smad) TGF-β pathways in the kidney in vivo and diminishes the number of interstitial fibroblasts and myofibroblasts as well as the interstitial accumulation of extracellular matrix proteins. These findings indicate that noncanonical TGF-β pathways are activated during the early and rapid renal fibrogenesis of obstructive nephropathy. Moreover, the current findings suggest that combined inhibition of key regulators of these non-smad TGF-β pathways even in dose-sparing protocols are effective treatments in renal fibrogenesis.


2018 ◽  
Vol 315 (5) ◽  
pp. H1112-H1126 ◽  
Author(s):  
Sarah J. Parker ◽  
Aleksandr Stotland ◽  
Elena MacFarlane ◽  
Nicole Wilson ◽  
Amanda Orosco ◽  
...  

The objective of the present study was to 1) analyze the ascending aortic proteome within a mouse model of Marfan syndrome (MFS; Fbn1C1041G/+) at early and late stages of aneurysm and 2) subsequently test a novel hypothesis formulated on the basis of this unbiased proteomic screen that links changes in integrin composition to transforming growth factor (TGF)-β-dependent activation of the rapamycin-independent component of mammalian target of rapamycin (Rictor) signaling pathway. Ingenuity Pathway Analysis of over 1,000 proteins quantified from the in vivo MFS mouse aorta by data-independent acquisition mass spectrometry revealed a predicted upstream regulator, Rictor, that was selectively activated in aged MFS mice. We validated this pattern of Rictor activation in vivo by Western blot analysis for phosphorylation on Thr1135 in a separate cohort of mice and showed in vitro that TGF-β activates Rictor in an integrin-linked kinase-dependent manner in cultured aortic vascular smooth muscle cells. Expression of β3-integrin was upregulated in the aged MFS aorta relative to young MFS mice and wild-type mice. We showed that β3-integrin expression and activation modulated TGF-β-induced Rictor phosphorylation in vitro, and this signaling effect was associated with an altered vascular smooth muscle cell proliferative-migratory and metabolic in vitro phenotype that parallels the in vivo aneurysm phenotype in MFS. These results reveal that Rictor is a novel, context-dependent, noncanonical TGF-β signaling effector with potential pathogenic implications in aortic aneurysm. NEW & NOTEWORTHY We present the most comprehensive quantitative analysis of the ascending aortic aneurysm proteome in Marfan syndrome to date resulting in novel and potentially wide-reaching findings that expression and signaling by β3-integrin constitute a modulator of transforming growth factor-β-induced rapamycin-independent component of mammalian target of rapamycin (Rictor) signaling and physiology in aortic vascular smooth muscle cells.


Author(s):  
Feifei Wang ◽  
Odjo G. Gouttia ◽  
Ling Wang ◽  
Aimin Peng

First-line treatments for oral cancer typically include surgery, radiation, and in some cases, chemotherapy. Radiation and oral cancer chemotherapeutics confer cytotoxicity largely by inducing DNA damage, underscoring the importance of the cellular DNA damage repair and response pathways in cancer therapy. However, tumor recurrence and acquired resistance, following the initial response to treatment, remains as a major clinical challenge. By analyzing oral tumor cells derived from the primary and recurrent tumors of the same patient, our study revealed upregulated PARP1 expression in the recurrent tumor cells. Cisplatin and 5-fluorouracil treatment further augmented PARP1 expression in the recurrent, but not the primary, tumor cells. Post-treatment upregulation of PARP1 was dependent on the catalytic activities of PARP and CDK7. Consistent with the established function of PARP1 in DNA repair, we showed that overexpression of PARP1 rendered the primary tumor cells highly resistant to DNA damage treatment. Conversely, PARP inhibition partially reversed the treatment resistance in the recurrent tumor cells; combinatorial treatment using a PARP inhibitor and cisplatin/5-fluorouracil significantly sensitized the tumor response in vivo. Taken together, we reported here PARP1 upregulation as a clinically relevant mechanism involved in oral cancer recurrence, and suggested the clinical benefit of PARP inhibitors, currently approved for the treatment of several other types of cancer, in oral cancer.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Chencheng Han ◽  
Hong Li ◽  
Zhifei Ma ◽  
Guozhang Dong ◽  
Qianyun Wang ◽  
...  

AbstractLittle is known about noncoding tumor suppressor genes. An effective way to identify these genes is by analyzing somatic copy number variation (CNV)-related noncoding genes. By integrated bioinformatics analyses of differentially expressed long noncoding RNAs (lncRNAs) and arm-level CNVs in lung adenocarcinoma (LUAD), we identified a potential antitumor gene, MIR99AHG, encoding lncRNA MIR99AHG as well as a miR-99a/let-7c/miR-125b2 cluster on chromosome 21q. All four of these transcripts were downregulated in LUAD tissues partly due to the copy number deletion of the MIR99AHG gene. Both MIR99AHG and miR-99a expression was positively correlated with the survival of LUAD patients. MIR99AHG suppressed proliferation and metastasis and promoted autophagy both in vitro and in vivo. Mechanistically, the interaction between MIR99AHG and ANXA2 could accelerate the ANXA2-induced ATG16L+ vesicle biogenesis, thus promoting phagophore assembly. Additionally, miR-99a targeted a well-known autophagy suppressor, mammalian target of rapamycin (mTOR), thereby synergistically promoting autophagy and postponing LUAD progression with MIR99AHG. In summary, MIR99AHG emerges as a noncoding tumor suppressor gene in LUAD, providing a new strategy for antitumor therapy.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Jason K. Sa ◽  
Nakho Chang ◽  
Hye Won Lee ◽  
Hee Jin Cho ◽  
Michele Ceccarelli ◽  
...  

Abstract Background Glioblastoma (GBM) is a complex disease with extensive molecular and transcriptional heterogeneity. GBM can be subcategorized into four distinct subtypes; tumors that shift towards the mesenchymal phenotype upon recurrence are generally associated with treatment resistance, unfavorable prognosis, and the infiltration of pro-tumorigenic macrophages. Results We explore the transcriptional regulatory networks of mesenchymal-associated tumor-associated macrophages (MA-TAMs), which drive the malignant phenotypic state of GBM, and identify macrophage receptor with collagenous structure (MARCO) as the most highly differentially expressed gene. MARCOhigh TAMs induce a phenotypic shift towards mesenchymal cellular state of glioma stem cells, promoting both invasive and proliferative activities, as well as therapeutic resistance to irradiation. MARCOhigh TAMs also significantly accelerate tumor engraftment and growth in vivo. Moreover, both MA-TAM master regulators and their target genes are significantly correlated with poor clinical outcomes and are often associated with genomic aberrations in neurofibromin 1 (NF1) and phosphoinositide 3-kinases/mammalian target of rapamycin/Akt pathway (PI3K-mTOR-AKT)-related genes. We further demonstrate the origination of MA-TAMs from peripheral blood, as well as their potential association with tumor-induced polarization states and immunosuppressive environments. Conclusions Collectively, our study characterizes the global transcriptional profile of TAMs driving mesenchymal GBM pathogenesis, providing potential therapeutic targets for improving the effectiveness of GBM immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document