scholarly journals Angiotensin Inhibition, TGF-β and EMT in Cancer

Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2785
Author(s):  
Fabian Bernhard Pallasch ◽  
Udo Schumacher

Angiotensin inhibitors are standard drugs in cardiovascular and renal diseases that have antihypertensive and antifibrotic properties. These drugs also exert their antifibrotic effects in cancer by reducing collagen and hyaluronan deposition in the tumor stroma, thus enhancing drug delivery. Angiotensin II signaling interferes with the secretion of the cytokine TGF-β—a known driver of malignancy. TGF-β stimulates matrix production in cancer-associated fibroblasts, and thus drives desmoplasia. The effect of TGF-β on cancer cells itself is stage-dependent and changes during malignant progression from inhibitory to stimulatory. The intracellular signaling for the TGF-β family can be divided into an SMAD-dependent canonical pathway and an SMAD-independent noncanonical pathway. These capabilities have made TGF-β an interesting target for numerous drug developments. TGF-β is also an inducer of epithelial–mesenchymal transition (EMT). EMT is a highly complex spatiotemporal-limited process controlled by a plethora of factors. EMT is a hallmark of metastatic cancer, and with its reversal, an important step in the metastatic cascade is characterized by a loss of epithelial characteristics and/or the gain of mesenchymal traits.

2020 ◽  
Vol 22 (1) ◽  
pp. 89
Author(s):  
Ha Thi Thu Do ◽  
Jungsook Cho

Chemokine–receptor interactions play multiple roles in cancer progression. It was reported that the overexpression of X-C motif chemokine receptor 1 (XCR1), a specific receptor for chemokine X-C motif chemokine ligand 1 (XCL1), stimulates the migration of MDA-MB-231 triple-negative breast cancer cells. However, the exact mechanisms of this process remain to be elucidated. Our study found that XCL1 treatment markedly enhanced MDA-MB-231 cell migration. Additionally, XCL1 treatment enhanced epithelial–mesenchymal transition (EMT) of MDA-MB-231 cells via E-cadherin downregulation and upregulation of N-cadherin and vimentin as well as increases in β-catenin nucleus translocation. Furthermore, XCL1 enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, the effects of XCL1 on cell migration and intracellular signaling were negated by knockdown of XCR1 using siRNA, confirming XCR1-mediated actions. Treating MDA-MB-231 cells with U0126, a specific mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, blocked XCL1-induced HIF-1α accumulation and cell migration. The effect of XCL1 on cell migration was also evaluated in ER-/HER2+ SK-BR-3 cells. XCL1 also promoted cell migration, EMT induction, HIF-1α accumulation, and ERK phosphorylation in SK-BR-3 cells. While XCL1 did not exhibit any significant impact on the matrix metalloproteinase (MMP)-2 and -9 expressions in MDA-MB-231 cells, it increased the expression of these enzymes in SK-BR-3 cells. Collectively, our results demonstrate that activation of the ERK/HIF-1α/EMT pathway is involved in the XCL1-induced migration of both MDA-MB-231 and SK-BR-3 breast cancer cells. Based on our findings, the XCL1–XCR1 interaction and its associated signaling molecules may serve as specific targets for the prevention of breast cancer cell migration and metastasis.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 476 ◽  
Author(s):  
Chia-Jung Li ◽  
Pei-Yi Chu ◽  
Giou-Teng Yiang ◽  
Meng-Yu Wu

The transforming growth factor-β (TGF-β) signaling pathway plays multiple regulatory roles in the tumorigenesis and development of cancer. TGF-β can inhibit the growth and proliferation of epithelial cells and induce apoptosis, thereby playing a role in inhibiting breast cancer. Therefore, the loss of response in epithelial cells that leads to the inhibition of cell proliferation due to TGF-β is a landmark event in tumorigenesis. As tumors progress, TGF-β can promote tumor cell invasion, metastasis, and drug resistance. At present, the above-mentioned role of TGF-β is related to the interaction of multiple signaling pathways in the cell, which can attenuate or abolish the inhibition of proliferation and apoptosis-promoting effects of TGF-β and enhance its promotion of tumor progression. This article focuses on the molecular mechanisms through which TGF-β interacts with multiple intracellular signaling pathways in tumor progression and the effects of these interactions on tumorigenesis.


2014 ◽  
Vol 60 (3) ◽  
pp. 322-331 ◽  
Author(s):  
E.A. Avilova ◽  
O.E. Andreeva ◽  
V.A. Shatskaya ◽  
M.A. Krasilnikov

The main goal of this work was to study the intracellular signaling pathways responsible for the development of hormone resistance and maintaining the autonomous growth of breast cancer cells. In particular, the role of PAK1 (p21-activated kinase 1), the key mitogenic signaling protein, in the development of cell resistance to estrogens was analyzed. In vitro studies were performed on cultured breast cancer cell lines: estrogen-dependent estrogen receptor (ER)-positive MCF-7 cells and estrogen-resistant ER-negative HBL-100 cells. We found that the resistant HBL-100 cells were characterized by a higher level of PAK1 and demonstrated PAK1 involvement in the maintaining of estrogen-independent cell growth. We have also shown PAK1 ability to up-regulate Snail1, one of the epithelial-mesenchymal transition proteins, and obtained experimental evidence for Snail1 importance in the regulation of cell proliferation. In general, the results obtained in this study demonstrate involvement of PAK1 and Snail1 in the formation of estrogen-independent phenotype of breast cancer cells showing the potential role of both proteins as markers of hormone resistance of breast tumors.


2019 ◽  
Vol 20 (12) ◽  
pp. 2870 ◽  
Author(s):  
Irina V. Bure ◽  
Marina V. Nemtsova ◽  
Dmitry V. Zaletaev

The epithelial–mesenchymal transition (EMT) is thought to be at the root of invasive and metastatic cancer cell spreading. E-cadherin is an important player in this process, which forms the structures that establish and maintain cell–cell interactions. A partial or complete loss of E-cadherin expression in the EMT is presumably mediated by mechanisms that block the expression of E-cadherin regulators and involve the E-cadherin-associated transcription factors. The protein is involved in several oncogenic signaling pathways, such as the Wnt/β-catenin, Rho GTPase, and EGF/EGFR, whereby it plays a role in many tumors, including gastric cancer. Such noncoding transcripts as microRNAs and long noncoding RNAs—critical components of epigenetic control of gene expression in carcinogenesis—contribute to regulation of the E-cadherin function by acting directly or through numerous factors controlling transcription of its gene, and thus affecting not only cancer cell proliferation and metastasis, but also the EMT. This review focuses on the role of E-cadherin and the non-coding RNAs-mediated mechanisms of its expressional control in the EMT during stomach carcinogenesis.


Medicines ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 19 ◽  
Author(s):  
Leonardo Marques da Fonseca ◽  
Lucas Rodrigues Jacques da Silva ◽  
Jhenifer Santos dos Reis ◽  
Marcos André Rodrigues da Costa Santos ◽  
Victoria de Sousa Chaves ◽  
...  

Background: Piperine, an amide extracted from the Piper spices, exhibits strong anti-tumor properties. However, its effect on the epithelial–mesenchymal transition (EMT) process has never been investigated. Herein, we evaluate the toxic effect of piperine on lung adenocarcinoma (A549), breast adenocarcinoma (MDA-MB-231) and hepatocellular carcinoma (HepG2) cell lines, as well as its ability to inhibit EMT-related events induced by TGF-β1 treatment. Methods: The cell viability was investigated by MTT assay. Protein expression was evaluated by Western blot. Gene expression was monitored by real-time PCR. Zymography assay was employed to detect metalloproteinase (MMP) activity in conditioned media. Cell motility was assessed by the wound-healing and phagokinetic gold sol assays. Results: The results revealed that piperine was cytotoxic in concentrations over 100 µM, showing IC50 values for HepG2, MDA-MB-231 and A549 cell lines of 214, 238 and 198 µM, respectively. In order to investigate whether piperine would reverse the TGF-β1 induced-EMT, the A549 cell line was pretreated with sublethal concentrations of the natural amide followed by the addition of TGF-β1. Besides disrupting EMT-related events, piperine also inhibited both ERK 1/2 and SMAD 2 phosphorylation. Conclusions: These results suggest that piperine might be further used in therapeutic strategies for metastatic cancer and EMT-related disorders.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 830
Author(s):  
Ellen Emi Kato ◽  
Sandra Coccuzzo Sampaio

Epithelial–mesenchymal transition (EMT) occurs in the early stages of embryonic development and plays a significant role in the migration and the differentiation of cells into various types of tissues of an organism. However, tumor cells, with altered form and function, use the EMT process to migrate and invade other tissues in the body. Several experimental (in vivo and in vitro) and clinical trial studies have shown the antitumor activity of crotoxin (CTX), a heterodimeric phospholipase A2 present in the Crotalus durissus terrificus venom. In this study, we show that CTX modulates the microenvironment of tumor cells. We have also evaluated the effect of CTX on the EMT process in the spheroid model. The invasion of type I collagen gels by heterospheroids (mix of MRC-5 and A549 cells constitutively prepared with 12.5 nM CTX), expression of EMT markers, and secretion of MMPs were analyzed. Western blotting analysis shows that CTX inhibits the expression of the mesenchymal markers, N-cadherin, α-SMA, and αv. This study provides evidence of CTX as a key modulator of the EMT process, and its antitumor action can be explored further for novel drug designing against metastatic cancer.


2020 ◽  
Vol 7 (2) ◽  
pp. HEP22
Author(s):  
Jiuliang Yan ◽  
Binghai Zhou ◽  
Hui Li ◽  
Lei Guo ◽  
Qinghai Ye

Hepatocellular carcinoma (HCC) is one of the most common liver malignancies and is a leading cause of cancer-related deaths. Most HCC patients are diagnosed at an advanced stage and current treatments show poor therapeutic efficacy. It is particularly urgent to explore early diagnosis methods and effective treatments of HCC. There are a growing number of studies that show GOLM1 is one of the most promising markers for early diagnosis and prognosis of HCC. It is also involved in immune regulation, activation and degradation of intracellular signaling factors and promotion of epithelial–mesenchymal transition. GOLM1 can promote HCC progression and metastasis. The understanding of the GOLM1 regulation mechanism may provide new ideas for the diagnosis, monitoring and treatment of HCC.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Jihye Ryu ◽  
Jung Weon Lee

Transmembrane 4 L six family member 5 (TM4SF5) can form tetraspanin-enriched microdomains (TERMs) on the cell’s surface. TERMs contain protein-protein complexes comprised of tetraspanins, growth factor receptors, and integrins. These complexes regulate communication between extracellular and intracellular spaces to control diverse cellular functions. TM4SF5 influences the epithelial-mesenchymal transition (EMT), aberrant multilayer cellular growth, drug resistance, enhanced migration and invasion, circulation through the bloodstream, tumor-initiation property, metastasis, and muscle development in zebrafish. Here, current data on TM4SF5’s roles in the development of fibrotic phenotypes are reviewed. TM4SF5 is induced by transforming growth factor β1 (TGFβ1) signaling via a collaboration with epidermal growth factor receptor (EGFR) activation. TM4SF5, by itself or in concert with other receptors, transduces signals intracellularly. In hepatocytes, TM4SF5 expression regulates cell cycle progression, migration, and expression of extracellular matrix components. In CCl4-treated mice, TM4SF5, α-smooth muscle actin (α-SMA), and collagen I expression are observed together along the fibrotic septa regions of the liver. These fibrotic phenotypes are diminished by anti-TM4SF5 reagents, such as a specific small compound [TSAHC, 4′-(p-toluenesulfonylamido)-4-hydroxychalcone] or a chimeric antibody. This review discusses the antifibrotic strategies that target TM4SF5 and its associated protein networks that regulate the intracellular signaling necessary for fibrotic functions of hepatocytes.


Sign in / Sign up

Export Citation Format

Share Document