scholarly journals MiR-125b-5p Is Involved in Sorafenib Resistance through Ataxin-1-Mediated Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma

Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4917
Author(s):  
Akihiro Hirao ◽  
Yasushi Sato ◽  
Hironori Tanaka ◽  
Kensei Nishida ◽  
Tetsu Tomonari ◽  
...  

The mechanism of resistance to sorafenib in hepatocellular carcinoma (HCC) remains unclear. We analyzed miRNA expression profiles in sorafenib-resistant HCC cell lines (PLC/PRF5-R1/R2) and parental cell lines (PLC/PRF5) to identify the miRNAs responsible for resistance. Drug sensitivity, migration/invasion capabilities, and epithelial-mesenchymal transition (EMT) properties were analyzed by biochemical methods. The clinical relevance of the target genes to survival in HCC patients were assessed using a public database. Four miRNAs were significantly upregulated in PLC/PRF5-R1/-R2 compared with PLC/PRF5. Among them, miR-125b-5p mimic-transfected PLC/PRF5 cells (PLC/PRF5-miR125b) and showed a significantly higher IC50 for sorafenib compared with controls, while the other miRNA mimics did not. PLC/PRF5-miR125b showed lower E-cadherin and higher Snail and vimentin expression—findings similar to those for PLC/PRF5-R2—which suggests the induction of EMT in those cells. PLC/PRF5-miR125b exhibited significantly higher migration and invasion capabilities and induced sorafenib resistance in an in vivo mouse model. Bioinformatic analysis revealed ataxin-1 as a target gene of miR-125b-5p. PLC/PRF5 cells transfected with ataxin-1 siRNA showed a significantly higher IC50, higher migration/invasion capability, higher cancer stem cell population, and an EMT phenotype. Median overall survival in the low-ataxin-1 patient group was significantly shorter than in the high-ataxin-1 group. In conclusion, miR-125b-5p suppressed ataxin-1 and consequently induced Snail-mediated EMT and stemness, leading to a poor prognosis in HCC patients.

2018 ◽  
Vol 243 (7) ◽  
pp. 645-654 ◽  
Author(s):  
Yi-Quan Yan ◽  
Juan Xie ◽  
Jing-Fu Wang ◽  
Zhao-Feng Shi ◽  
Xiang Zhang ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most malignant diseases worldwide. The unfavorable clinical outcome and poor prognosis are due to high rates of recurrence and metastasis after treatments. Some scholars of traditional Chinese medicine suggested that endogenous wind-evil had played an important role in metastasis of malignant tumor. Therefore, the drug of dispelling wind-evil could be used to prevent cancer metastasis and improve the poor prognosis. So we wondered whether Scorpion, one of the most important wind calming drugs, has antitumor effect especially in epithelial–mesenchymal transition (EMT) and metastasis of HCC in this research. We found that Scorpion-medicated serum could inhibit proliferation, induce apoptosis, and decrease migration and invasion capacity of Hepa1-6 cells in vitro. Meanwhile, we observed that water decoction of Scorpion restrained tumor growth and metastasis in nude mouse of HCC metastasis models. Further experiments showed that Scorpion could suppress EMT, which is characterized by increased epithelial marker E-cadherin expression and decreased mesenchymal markers N-cadherin and Snail expression following Scorpion treatment both in vitro and in vivo. These results suggested that the Scorpion could inhibit Hepa1-6 cells’ invasion and metastasis in part by reversing EMT and providing a possible potential approach for preventing HCC metastasis. Impact statement The unfavorable clinical outcome and poor prognosis of hepatocellular carcinoma (HCC) are due to high rates of recurrence and metastasis after treatments. Here we found Scorpion, one of the most important wind calming drugs, has antitumor effect. Scorpion-medicated serum inhibited the proliferation, induced apoptosis, and decreased migration and invasion capacity of Hepa1-6 cells in vitro. Water decoction of Scorpion restrained tumor growth and metastasis in nude mouse of HCC metastasis models. Further experiments showed that Scorpion could suppress EMT of HCC both in vitro and in vivo. Our results suggested that the Scorpion could inhibit Hepa1-6 cells’ invasion and metastasis in part by reversing EMT and providing a possible potential approach for preventing HCC metastasis.


2018 ◽  
Vol 48 (5) ◽  
pp. 1928-1941 ◽  
Author(s):  
Chuan He ◽  
Zhigang Liu ◽  
Li Jin ◽  
Fang Zhang ◽  
Xinhao Peng ◽  
...  

Background/Aims: MicroRNA-142-3p (miR-142-3p) is dysregulated in many malignancies and may function as a tumor suppressor or oncogene in tumorigenesis and tumor development. However, few studies have investigated the clinical significance and biological function of miR-142-3p in hepatocellular carcinoma (HCC). Methods: The expression levels of taurine upregulated gene 1 (TUG1), miR-142-3p, and zinc finger E-box-binding homeobox 1 (ZEB1) were evaluated in HCC tissues and cell lines by quantitative real-time PCR. MTT and colony formation assays were used to detect cell proliferation ability, transwell assays were used to assess cell migration and invasion, and luciferase reporter assays were used to examine the interaction between the long noncoding RNA TUG1 and miR-142-3p. Tumor formation was evaluated through in vivo experiments. Results: miR-142-3p was significantly downregulated in HCC tissues, but TUG1 was upregulated in HCC tissues. Knockdown of TUG1 and upregulation of miR-142-3p inhibited cell proliferation, cell migration, cell invasion, and the epithelial-mesenchymal transition (EMT). miR-142-3p was found to be a prognostic factor of HCC, and the mechanism by which TUG1 upregulated ZEB1 was via direct binding to miR-142-3p. In vivo assays showed that TUG1 knockdown suppressed cell proliferation and the EMT in nude mice. Conclusion: The results of this study suggest that the TUG1/miR-142-3p/ ZEB1 axis contributes to the formation of malignant behaviors in HCC.


2019 ◽  
Vol 47 (3) ◽  
pp. 1319-1329 ◽  
Author(s):  
Jian Zhang ◽  
Hai Ma ◽  
Liu Yang ◽  
Hongchun Yang ◽  
Zhenxing He

Objectives Overexpression of human trophoblast cell surface antigen 2 (Trop2) has been observed in many cancers; however, its roles in proliferation, apoptosis, migration, and invasion of hepatocellular carcinoma (HCC) remain unclear. Thus, this study aimed to characterize the function of Trop2 in HCC. Methods Trop2 protein expression was detected by immunohistochemistry in HCC tissues. Cell proliferation, apoptosis, and invasion were respectively measured by CCK-8, flow cytometry, Transwell, and wound healing assays. Expression levels of epithelial–mesenchymal transition-related proteins and Trop2 protein in HCC cell lines were detected by western blotting after silencing of the TROP2 gene. Results Trop2 protein was highly expressed in HCC tissues and HCC cell lines. Trop2 mRNA and protein expression levels decreased in HepG2 and HCCLM3 cells after transfection with Trop2 siRNA. Silencing of the TROP2 gene in HepG2 and HCCLM3 cells strongly inhibited cell proliferation and migration, while enhancing cell apoptosis. Investigation of the molecular mechanism revealed that silencing of the TROP2 gene suppressed epithelial–mesenchymal transition of HepG2 and HCCLM3 cells. Conclusions The results of the present study may improve understanding of the role of Trop2 in regulation of cell proliferation and invasion, and may aid in development of novel therapy for HCC.


2017 ◽  
Vol 37 (3) ◽  
Author(s):  
Xin Chen ◽  
Bo Yue ◽  
Changming Zhang ◽  
Meihao Qi ◽  
Jianhua Qiu ◽  
...  

The aim of the present study was to explore the mechanism through which miR-130a-3p affects the viability, proliferation, migration, and invasion of nasopharyngeal carcinoma (NPC). Tissue samples were collected from the hospital department. NPC cell lines were purchased to conduct the in vitro and in vivo assays. A series of biological assays including MTT, Transwell, and wound healing assays were conducted to investigate the effects of miR-130a-3p and BACH2 on NPC cells. MiR-130a-3p was down-regulated in both NPC tissues and cell lines, whereas BACH2 was up-regulated in both tissues and cell lines. MiR-130a-3p overexpression inhibited NPC cell viability, proliferation, migration, and invasion but promoted cell apoptosis. The converse was true of BACH2, the down-regulation of which could inhibit the corresponding cell abilities and promote apoptosis of NPC cells. The target relationship between miR-130a-3p and BACH2 was confirmed. The epithelial–mesenchymal transition (EMT) pathway was also influenced by miR-130a-3p down-regulation. In conclusion, miR-130a-3p could bind to BACH2, inhibit NPC cell abilities, and promote cell apoptosis.


2020 ◽  
Author(s):  
Sisi Wei ◽  
Shiping Sun ◽  
Xinliang Zhou ◽  
Cong Zhang ◽  
Xiaoya Li ◽  
...  

Abstract A substantial fraction of transcripts are known as long noncoding RNAs (lncRNAs), and these transcripts play pivotal roles in the development of cancer. However, little information has been published regarding the functions of lncRNAs in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanisms. In our previous studies, we demonstrated that small nucleolar RNA host gene 5 (SNHG5), a known lncRNA, is dysregulated in gastric cancer (GC). In this study, we explored the expression and function of SNHG5 in development of ESCC. SNHG5 was found to be downregulated in human ESCC tissues and cell lines, and this downregulation was associated with cancer progression, clinical outcomes and survival rates of ESCC patients. Furthermore, we also found that overexpression of SNHG5 significantly inhibited the proliferation, migration and invasion of ESCC cells in vivo and in vitro. Notably, we found that metastasis-associated protein 2 (MTA2) was pulled down by SNHG5 in ESCC cells using RNA pulldown assay. We also found that SNHG5 reversed the epithelial–mesenchymal transition by interacting with MTA2. In addition, overexpression of SNHG5 downregulated the transcription of MTA2 and caused its ubiquitin-mediated degradation. Thus, overexpression of MTA2 partially abrogated the effect of SNHG5 in ESCC cell lines. Furthermore, we found that MTA2 mRNA expression was significantly elevated in ESCC specimens, and a negative correlation between SNHG5 and MTA2 expression was detected. Overall, this study demonstrated, for the first time, that SNHG5-regulated MTA2 functions as an important player in the progression of ESCC and provide a new potential therapeutic strategy for ESCC.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yixi Zhang ◽  
Xiaojing Luo ◽  
Jianwei Lin ◽  
Shunjun Fu ◽  
Pei Feng ◽  
...  

Gelsolin (GSN), a cytoskeletal protein, is frequently overexpressed in different cancers and promotes cell motility. The biological function of GSN in hepatocellular carcinoma (HCC) and its mechanism remain unclear. The expression of GSN was assessed in a cohort of 188 HCC patients. The effects of GSN on the migration and invasion of tumour cells were examined. Then, the role of GSN in tumour growth in vivo was determined by using a cancer metastasis assay. The possible mechanism by which GSN promotes HCC progression was explored. As a result, GSN was overexpressed in HCC tissues. High GSN expression was significantly correlated with late Edmondson grade, encapsulation, and multiple tumours. Patients with high GSN expression had worse overall survival (OS) and disease-free survival (DFS) than those with low GSN expression. GSN expression was identified as an independent risk factor in both OS (hazard risk (HR) = 1.620, 95% confidence interval (CI) = 1.105–2.373, P<0.001) and DFS (HR = 1.744, 95% CI = 1.205–2.523, P=0.003). Moreover, GSN knockdown significantly inhibited the migration and invasion of HCC tumour cells, while GSN overexpression attenuated these effects by regulating epithelial-mesenchymal transition (EMT) In conclusion, GSN promotes cancer progression and is associated with a poor prognosis in HCC patients. GSN promotes HCC progression by regulating EMT.


2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Dawei Wang ◽  
Guoliang Lu ◽  
Yuan Shao ◽  
Da Xu

miRNAs are a class of non-coding RNAs that exert critical roles in various biological processes. The aim of the present study was to identify the functional roles of miR-802 in regulating epithelial–mesenchymal transition (EMT) in prostate cancer (PCa). miR-802 expression was detected in 73 pairs of PCa samples and PCa cell lines (PC3 and DU145 cells) by qRT-PCR. Cell proliferation was detected using MTT assay, and cell apoptosis was evaluated using flow cytometry. Transwell assay was conducted to investigate cell migration and invasion. Expression analysis of a set of EMT markers was performed to explore whether miR-802 is involved in EMT program. Xenograft model was established to investigate the function of miR-802 in carcinogenesis in vivo. The direct regulation of Flotillin-2 (Flot2) by miR-802 was identified using luciferase reporter assay. miR-802 was remarkably down-regulated in PCa tissues and cell lines. Gain-of-function trails showed that miR-802 serves as an ‘oncosuppressor’ in PCa through inhibiting cell proliferation and promoting cell apoptosis in vitro. Overexpression of miR-802 significantly suppressed in vivo PCa tumor growth. Luciferase reporter analysis identified Flot2 as a direct target of miR-802 in PCa cells. Overexpressed miR-802 significantly suppressed EMT, migration and invasion in PCa cells by regulating Flot2. We identified miR-802 as a novel tumor suppressor in PCa progression and elucidated a novel mechanism of the miR-802/Flot2 axis in the regulation of EMT, which may be a potential therapeutic target.


2018 ◽  
Vol 96 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Ping He ◽  
Xiaojie Jin

Objective: The aim of this study was to investigate the role of SOX10 in nasopharyngeal carcinoma (NPC) and the underlying molecular mechanisms. Methods: The expression of SOX10 was initially assessed in human NPC tissues and a series of NPC cell lines through quantitative real-time PCR (qRT-PCR) and Western blot. Then, cell proliferation, cycle, migration, and the invasiveness of NPC cells with knockdown of SOX10 were examined by MTT, flow cytometry, and Transwell migration and invasion assays, respectively. Finally, nude mice tumorigenicity experiments were performed to evaluate the effects of SOX10 on NPC growth and metastasis in vivo. Results: SOX10 was significantly increased in NPC tissues and cell lines. In-vitro experiments revealed that loss of SOX10 obviously inhibited cell proliferation, migration, and invasiveness, as well as the epithelial–mesenchymal transition (EMT) process in NPC cells. In-vivo experiments further demonstrated that disrupted SOX10 expression restrained NPC growth and metastasis, especially in lung and liver. Conclusion: Taken together, our data confirmed the role of SOX10 as an oncogene in NPC progression, and revealed that SOX10 may serve as a novel biomarker for diagnosis of NPC, as well as a potential therapeutic target against this disease.


2019 ◽  
Vol 30 (19) ◽  
pp. 2527-2534 ◽  
Author(s):  
Linsen Shi ◽  
Zhaoying Wu ◽  
Ji Miao ◽  
Shangce Du ◽  
Shichao Ai ◽  
...  

The accumulation of adenosine in the tumor microenvironment is associated with tumor progression in many cancers. However, whether adenosine is involved in gastric cancer (GC) metastasis and progression, and the underlying molecular mechanism, is largely unclear. In this study, we find that GC tissues and cell lines had higher A2aR levels than nontumor gastric tissues and cell lines. A2aR expression correlated positively with TNMstage, and associated with poor outcomes. Adenosine enhanced the expression of the stemness and epithelial–mesenchymal transition-associated genes by binding to A2aR. A2aR expression on GC cells promoted metastasis in vivo. The PI3K-AKT-mTOR signaling pathway was involved in adenosine-stimulated GC cell migration and invasion. Our results indicate that adenosine promotes GC cell invasion and metastasis by interacting with A2aR to enhance PI3K–AKT–mTOR pathway signaling.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Chenlong Li ◽  
Hongshan Zheng ◽  
Weiliang Hou ◽  
Hongbo Bao ◽  
Jinsheng Xiong ◽  
...  

Abstract Accumulating evidence indicates long noncoding RNAs (lncRNA) play a vital role in tumor progression. However, the role of linc00645-induced accelerated malignant behavior in glioblastoma (GBM) remains unknown. In the present study, linc00645 expression was significantly upregulated in GBM tissues and cell lines. High level of linc00645 was associated with poor overall survival in GBM patients. Knockdown of linc00645 suppressed the proliferation, stemness, migration, invasion, and reversed transforming growth factor (TGF)-β-induced motility of glioma cell lines. Furthermore, linc00645 directly interacted with miR-205-3p and upregulated of miR-205-3p impeded efficiently the increase of ZEB1 induced by linc00645 overexpression. Moreover, knockdown of linc00645 significantly suppressed the progression of glioma cells in vivo. miR-205-3p was a target of linc00645 and linc00645 modulates TGF-β-induced glioma cell migration and invasion via miR-205-3p. Taken together, our findings identified the linc00645/miR-205-3p/ZEB1 signaling axis as a key player in EMT of glioma cells triggered by TGF-β. These data elucidated that linc00645 plays an oncogenic role in glioma and it may serve as a prognostic biomarker and a potential therapeutic target for the treatment of glioma in humans.


Sign in / Sign up

Export Citation Format

Share Document