scholarly journals Phospho-Ser784-VCP Drives Resistance of Pancreatic Ductal Adenocarcinoma to Genotoxic Chemotherapies and Predicts the Chemo-Sensitizing Effect of VCP Inhibitor

Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5076
Author(s):  
Faliang Wang ◽  
Kiran Vij ◽  
Lin Li ◽  
Paarth Dodhiawala ◽  
Kian-Huat Lim ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) patients have a dismal prognosis due in large part to chemotherapy resistance. However, a small subset containing defects in the DNA damage response (DDR) pathways are chemotherapy-sensitive. Identifying intrinsic and therapeutically inducible DDR defects can improve precision and efficacy of chemotherapies for PDAC. DNA repair requires dynamic reorganization of chromatin-associated proteins, which is orchestrated by the AAA+ ATPase VCP. We recently discovered that the DDR function of VCP is selectively activated by Ser784 phosphorylation. In this paper, we show that pSer784-VCP but not total VCP levels in primary PDAC tumors negatively correlate with patient survival. In PDAC cell lines, different pSer784-VCP levels are induced by genotoxic chemotherapy agents and positively correlate with genome stability and cell survival. Causal effects of pSer784-VCP on DNA repair and cell survival were confirmed using VCP knockdown and functional rescue. Importantly, DNA damage-induced pSer784-VCP rather than total VCP levels in PDAC cell lines predict their chemotherapy response and chemo-sensitizing ability of selective VCP inhibitor NMS-873. Therefore, pSer784-VCP drives genotoxic chemotherapy resistance of PDAC, and can potentially be used as a predictive biomarker as well as a sensitizing target to enhance the chemotherapy response of PDAC.

2021 ◽  
Author(s):  
Cheng Ding ◽  
Yatong Li ◽  
Shunda Wang ◽  
Cheng Xing ◽  
Lixin Chen ◽  
...  

Abstract BackgroundPancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with an extremely poor prognosis and a high mortality rate. Genome-wide studies have shown that the SLIT/ROBO signaling pathway plays an important role in pancreatic tumor development and progression. However, the effect and mechanism of ROBO2 in the progression of pancreatic cancer remains largely unknown.MethodsIn this study, real-time polymerase chain reaction (RT-PCR) and western blot analyses were adopted to evaluate the expression level of ROBO2 and proteins in pancreatic cell lines. Cell migration and invasion and cell proliferation were conducted in AsPC-1 and MIA PaCa-2 cell lines. RNA sequencing and western blot were undertaken to explore the mechanisms and potential targeted molecules. ROBO2 expression in tumor tissues was evaluated by immunohistochemistry in 95 patients.ResultsROBO2 expression was downregulated in PDAC cell lines and tissue samples. A high level of ROBO2 was associated with good overall survival. Upregulation of ROBO2 inhibited PDAC cell proliferation, migration, and invasion, whereas the opposite results were found in the ROBO2 downregulation group. In addition, xenograft animal models further confirmed the effect of ROBO2 on proliferation. Finally, the RNA sequencing results indicated that ROBO2 facilitates anti-tumorigenicity partly via inhibiting ECM1 in PDAC. ConclusionsOur work suggests that ROBO2 inhibits tumor progression in PDAC and may serve as a predictive biomarker and therapeutic target in PDAC.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A948-A949
Author(s):  
Maggie Phillips ◽  
Michael Ware ◽  
Cameron Herting ◽  
Thomas Mace ◽  
Shishir Maithel ◽  
...  

BackgroundPancreatic ductal adenocarcinoma (PDAC) is refractory to immunotherapy due in part to cellular cross-talk with cancer associated fibroblasts (CAFs). These interactions shape the microenvironment in a manner that is profoundly immunosuppressive. Our group is identifying novel targets in the PDAC stroma that can be manipulated to enhance immunotherapy efficacy. We hypothesize dysregulation of the serine protease, CD26/DPP4 in PDAC contributes to the limited efficacy of immunotherapy. Further, we posit targeting CD26 enzymatic activity using inhibitors that are FDA-approved for adult patients with Type 2 Diabetes Mellitus can enhance the efficacy of immunotherapy in PDAC.MethodsPrimary CAFs isolated from patient PDAC resection specimens under an IRB-approved protocol, were subject to NanoString analysis.1 CD26 protein expression was measured in primary and immortalized CAFs and PDAC cells by immunoblot, flow cytometry and immunofluorescence, while ELISA detected soluble CD26. For in vivo efficacy, luciferase-expressing KPC-tumor cells were implanted orthotopically in the pancreas of immune-competent C57BL/6 mice. Bioluminescence imaging (BLI) confirmed established tumors and mice were randomized to sitagliptin (75 mg/kg in drinking water, CD26/DPP4 inhibitor), anti-PD-L1 Ab (200 ug 2x/week), or both combined for 3 weeks. Controls received vehicle or isotype control Ab. BLI utilized to track tumor progression and tissues harvested for analysis at study endpoint (day 18 of treatment).ResultsNanoString analysis identified CD26/DPP4 as significantly upregulated in RNA transcripts from primary CAFs vs. fibroblasts from normal pancreas (figure 1). We confirmed abundant CD26 expression on patient-derived CAFs and immortalized CAF cell lines, however, lower CD26 expression was observed on human PDAC cell lines (HPAC, PANC-1) by immunoblot, flow cytometry and immunofluorescence (figure 5).Abstract 904 Figure 1(A) Schema for analysis of transcript from n=10 primary CAFs (PSC) from PDAC patients vs. normal human pancreatic fibroblasts (HPPFC) via NanoString nCounter PanCancer Immune Profiling Panel. (B) Heat map of gene expression with upregulate DPP4 or CD26 transcript detected. Adapted from Mace et al., 2016.Abstract 904 Figure 2Validation of CD26 protein expression in human PDAC-derived CAF and PDAC cell lines by immunoblot analysisAbstract 904 Figure 3Analysis of surface human CD26 expression in PBMCs, PDAC-derived CAFs (h-iPSC-PDAC-1), and PDAC cells (PANC-1) by flow cytometry. Histograms representing human surface CD26 expressionAbstract 904 Figure 4Immunofluorescence analysis of CD26/DPP4 cellular localization in a human PDAC-derived CAF cell lineAbstract 904 Figure 5Combined Sitagliptin and PD-L1 blockade in a murine orthotopic model of PDAC. Fold change in tumor volume, determined by BLI, comparing baseline (Day 0 of treatment) to Day 18 of treatment. Each bar represents fold change in BLI determined tumor volume for each animalConclusionsOur results are the first to describe CD26 expression on PDAC-derived CAFs and indicate that sitagliptin augments anti-tumor activity of anti-PD-L1 in PDAC tumor-bearing mice. Our ongoing work will provide insight into specific immune cell populations responsible for efficacy of immunotherapy in murine models of PDAC, and the role of CD26 in various cellular compartments within the PDAC microenvironment.ReferencesMace TA, Shakya R, Pitarresi JR, Swanson B, McQuinn CW, Loftus S, Nordquist E, Cruz-Monserrate Z, Yu L, Young G, Zhong X, Zimmers TA, Ostrowski MC, Ludwig T, Bloomston M, Bekaii-Saab T, Lesinski GB. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut 2018;67(2):320–32.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sung-Hsin Kuo ◽  
Shih-Hung Yang ◽  
Ming-Feng Wei ◽  
Hsiao-Wei Lee ◽  
Yu-Wen Tien ◽  
...  

Abstract Background We previously demonstrated that nuclear BCL10 translocation participates in the instigation of NF-κB in breast cancer and lymphoma cell lines. In this study, we assessed whether nuclear BCL10 translocation is clinically significant in advanced and metastatic pancreatic ductal adenocarcinoma (PDAC). Method and materials We analyzed the expression of BCL10-, cell cycle-, and NF-κB- related signaling molecules, and the DNA-binding activity of NF-κB in three PDAC cell lines (mutant KRAS lines: PANC-1 and AsPC-1; wild-type KRAS line: BxPC-3) using BCL10 short hairpin RNA (shBCL10). To assess the anti-tumor effect of BCL10 knockdown in PDAC xenograft model, PANC-1 cells treated with or without shBCL10 transfection were inoculated into the flanks of mice. We assessed the expression patterns of BCL10 and NF-κB in tumor cells in 136 patients with recurrent, advanced, and metastatic PDAC using immunohistochemical staining. Results We revealed that shBCL10 transfection caused cytoplasmic translocation of BCL10 from the nuclei, inhibited cell viability, and enhanced the cytotoxicities of gemcitabine and oxaliplatin in three PDAC cell lines. Inhibition of BCL10 differentially blocked cell cycle progression in PDAC cell lines. Arrest at G1 phase was noted in wild-type KRAS cell lines; and arrest at G2/M phase was noted in mutant KRAS cell lines. Furthermore, shBCL10 transfection downregulated the expression of phospho-CDC2, phospho-CDC25C, Cyclin B1 (PANC-1), Cyclins A, D1, and E, CDK2, and CDK4 (BxPC-3), p-IκBα, nuclear expression of BCL10, BCL3, and NF-κB (p65), and attenuated the NF-κB pathway activation and its downstream molecule, c-Myc, while inhibition of BCL10 upregulated expression of p21, and p27 in both PANC-1 and BxPC-3 cells. In a PANC-1-xenograft mouse model, inhibition of BCL10 expression also attenuated the tumor growth of PDAC. In clinical samples, nuclear BCL10 expression was closely associated with nuclear NF-κB expression (p < 0.001), and patients with nuclear BCL10 expression had the worse median overall survival than those without nuclear BCL10 expression (6.90 months versus 9.53 months, p = 0.019). Conclusion Nuclear BCL10 translocation activates NF-κB signaling and contributes to tumor progression and poor prognosis of advanced/metastatic PDAC.


Author(s):  
Taoyue Yang ◽  
Peng Shen ◽  
Qun Chen ◽  
Pengfei Wu ◽  
Hao Yuan ◽  
...  

Abstract Background Circular RNAs (circRNAs) are becoming a unique member of non-coding RNAs (ncRNAs) with emerging evidence of their regulatory roles in various cancers. However, with regards to pancreatic ductal adenocarcinoma (PDAC), circRNAs biological functions remain largely unknown and worth investigation for potential therapeutic innovation. Methods In our previous study, next-generation sequencing was used to identify differentially expressed circRNAs in 3 pairs of PDAC and adjacent normal tissues. Further validation of circRHOBTB3 expression in PDAC tissues and cell lines and gain-and-loss function experiments verified the oncogenic role of circRHOBTB3. The mechanism of circRHOBTB3 regulatory role was validated by pull-down assays, RIP, luciferase reporter assays. The autophagy response of PANC-1 and MiaPaca-2 cells were detected by mCherry-GFP-LC3B labeling and confocal microscopy, transmission electron microscopy and protein levels of LC3B or p62 via Western blot. Results circRHOBTB3 is highly expressed in PDAC cell lines and tissues, which also promotes PDAC autophagy and then progression in vitro and in vivo. Mechanistically, circRHOBTB3 directly binds to miR-600 and subsequently acts as a miRNA-sponge to maintain the expression level of miR-600-targeted gene NACC1, which facilitates the autophagy response of PDAC cells for adaptation of proliferation via Akt/mTOR pathway. Moreover, the RNA-binding protein FUS (FUS) directly binds to pre-RHOBTB3 mRNA to mediate the biogenesis of circRHOBTB3. Clinically, circRHOBTB3, miR-600 and NACC1 expression levels are correlated with the prognosis of PDAC patients and serve as independent risk factors for PDAC patients. Conclusions FUS-mediated circRHOBTB3 functions as a tumor activator to promote PDAC cell proliferation by modulating miR-600/NACC1/Akt/mTOR axis regulated autophagy.


2018 ◽  
Vol 19 (10) ◽  
pp. 3234 ◽  
Author(s):  
Justyna Kutkowska ◽  
Leon Strzadala ◽  
Andrzej Rapak

Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly cancers in the world due to late diagnosis and poor response to available treatments. It is important to identify treatment strategies that will increase the efficacy and reduce the toxicity of the currently used therapeutics. In this study, the PDAC cell lines AsPC-1, BxPC-3, and Capan-1 were treated with sorafenib and betulinic acid alone and in combination. We examined the effect of combined treatments on viability (MTS test), proliferation and apoptosis (annexin V staining), cell cycle arrest (PI staining), alterations in signaling pathways (Western blotting), and colony-forming ability. The combination of sorafenib with betulinic acid inhibited the viability and proliferation of PDAC cells without the induction of apoptosis. The antiproliferative effect, caused by G2 cell cycle arrest, was strongly associated with increased expression of p21 and decreased expression of c-Myc and cyclin D1, and was induced only by combined treatment. Additionally, decreased proliferation could also be associated with the inhibition of the P13K/Akt and MAPK signaling pathways. Importantly, combination treatment reduced the colony-forming ability of PDAC cells, as compared to both compounds alone. Collectively, we showed that combined treatment with low concentrations of sorafenib and betulinic acid had the capacity to inhibit proliferation and abolish clonogenic activity in PDAC cell lines.


Oncogene ◽  
2021 ◽  
Author(s):  
P. A. Ávila-López ◽  
G. Guerrero ◽  
H. N. Nuñez-Martínez ◽  
C. A. Peralta-Alvarez ◽  
G. Hernández-Montes ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDAC) is one of the most intractable and devastating malignant tumors. Epigenetic modifications such as DNA methylation and histone modification regulate tumor initiation and progression. However, the contribution of histone variants in PDAC is unknown. Here, we demonstrated that the histone variant H2A.Z is highly expressed in PDAC cell lines and PDAC patients and that its overexpression correlates with poor prognosis. Moreover, all three H2A.Z isoforms (H2A.Z.1, H2A.Z.2.1, and H2A.Z.2.2) are highly expressed in PDAC cell lines and PDAC patients. Knockdown of these H2A.Z isoforms in PDAC cell lines induces a senescent phenotype, cell cycle arrest in phase G2/M, increased expression of cyclin-dependent kinase inhibitor CDKN2A/p16, SA-β-galactosidase activity and interleukin 8 production. Transcriptome analysis of H2A.Z-depleted PDAC cells showed altered gene expression in fatty acid biosynthesis pathways and those that regulate cell cycle and DNA damage repair. Importantly, depletion of H2A.Z isoforms reduces the tumor size in a mouse xenograft model in vivo and sensitizes PDAC cells to gemcitabine. Overexpression of H2A.Z.1 and H2A.Z.2.1 more than H2A.Z.2.2 partially restores the oncogenic phenotype. Therefore, our data suggest that overexpression of H2A.Z isoforms enables cells to overcome the oncoprotective barrier associated with senescence, favoring PDAC tumor grow and chemoresistance. These results make H2A.Z a potential candidate as a diagnostic biomarker and therapeutic target for PDAC.


Author(s):  
Meijin Wei ◽  
Chaochao Tan ◽  
Zhouqin Tang ◽  
Yingying Lian ◽  
Ying Huang ◽  
...  

Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs) performs essential roles in regulating cancer initiation and progression, but its implication in pancreatic ductal adenocarcinoma (PDAC) requires further elucidation. In this study, asymmetric dimethylarginine (ADMA)-containing peptides in PDAC cell line PANC-1 were identified by label-free quantitative proteomics combined with affinity purification, using human non-cancerous pancreatic ductal epithelium cell line HPDE6c7 as the control. In total, 289 ADMA sites in 201 proteins were identified in HPDE6c7 and PANC-1 cells, including 82 sites with lower dimethylation and 37 sites with higher dimethylation in PANC-1 cells compared with HPDE6c7 cells. These ADMA-containing peptides demonstrated significant enrichment of glycine and proline residues in both cell lines. Importantly, leucine residues were significantly enriched in ADMA-containing peptides identified only in HPDE6c7 cells or showing lower dimethylation in PANC-1 cells. ADMA-containing proteins were significantly enriched in multiple biological processes and signaling cascades associated with cancer development, such as spliceosome machinery, the Wnt/β-catenin, Hedgehog, tumor growth factor beta (TGF-β), and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, PDAC cell lines with enhanced cell viability showed lower PRMT4 protein abundance and global ADMA-containing protein levels compared with HPDE6c7. PRMT4 overexpression partially recovered ADMA-containing protein levels and repressed viability in PANC-1 cells. These results revealed significantly altered ADMA-containing protein profiles in human pancreatic carcinoma cells, which provided a basis for elucidating the pathogenic roles of PRMT-mediated protein methylation in pancreatic cancer.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Eleonóra Gál ◽  
Zoltán Veréb ◽  
Lajos Kemény ◽  
Dávid Rakk ◽  
András Szekeres ◽  
...  

AbstractPancreatic cancer (PC) is one of the leading causes of mortality rate globally and is usually associated with obstructive jaundice (OJ). Up to date, there is no clear consensus on whether biliary decompression should be performed prior to surgery and how high levels of serum bile affects the outcome of PC. Therefore, our study aims were to characterise the effect of bile acids (BAs) on carcinogenic processes using pancreatic ductal adenocarcinoma (PDAC) cell lines and to investigate the underlying mechanisms. Liquid chromatography-mass spectrometry was used to determine the serum concentrations of BAs. The effects of BAs on tumour progression were investigated using different assays. Mucin expressions were studied in normal and PDAC cell lines and in human samples at gene and protein levels and results were validated with gene silencing. The levels of BAs were significantly higher in the PDAC + OJ group compared to the healthy control. Treating PDAC cells with different BAs or with human serum obtained from PDAC + OJ patients enhanced the rate of proliferation, migration, adhesion, colony forming, and the expression of MUC4. In PDAC + OJ patients, MUC4 expression was higher and the 4-year survival rate was lower compare to PDAC patients. Silencing of MUC4 decreased BAs-induced carcinogenic processes in PDAC cells. Our results show that BAs promote carcinogenic process in PDAC cells, in which the increased expression of MUC4 plays an important role. Based on these results, we assume that in PC patients, where the disease is associated with OJ, the early treatment of biliary obstruction improves life expectancy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Arafat Siddiqui ◽  
Manuela Tumiati ◽  
Alia Joko ◽  
Jouko Sandholm ◽  
Pia Roering ◽  
...  

Critical DNA repair pathways become deranged during cancer development. This vulnerability may be exploited with DNA-targeting chemotherapy. Topoisomerase II inhibitors induce double-strand breaks which, if not repaired, are detrimental to the cell. This repair process requires high-fidelity functional homologous recombination (HR) or error-prone non-homologous end joining (NHEJ). If either of these pathways is defective, a compensatory pathway may rescue the cells and induce treatment resistance. Consistently, HR proficiency, either inherent or acquired during the course of the disease, enables tumor cells competent to repair the DNA damage, which is a major problem for chemotherapy in general. In this context, c-Abl is a protein tyrosine kinase that is involved in DNA damage-induced stress. We used a low-dose topoisomerase II inhibitor mitoxantrone to induce DNA damage which caused a transient cell cycle delay but allowed eventual passage through this checkpoint in most cells. We show that the percentage of HR and NHEJ efficient HeLa cells decreased more than 50% by combining c-Abl inhibitor imatinib with mitoxantrone. This inhibition of DNA repair caused more than 87% of cells in G2/M arrest and a significant increase in apoptosis. To validate the effect of the combination treatment, we tested it on commercial and patient-derived cell lines in high-grade serous ovarian cancer (HGSOC), where chemotherapy resistance correlates with HR proficiency and is a major clinical problem. Results obtained with HR-proficient and deficient HGSOC cell lines show a 50–85% increase of sensitivity by the combination treatment. Our data raise the possibility of successful targeting of treatment-resistant HR-proficient cancers.


Sign in / Sign up

Export Citation Format

Share Document