scholarly journals Removal of Nonylphenol Polyethylene Glycol (NPEG) with Au-TiO2 Catalysts: Kinetic and Initial Transformation Path

Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1205
Author(s):  
Claudia Aguilar ◽  
Mayra Garcia ◽  
Carlos Montalvo ◽  
Francisco Anguebes ◽  
Edgar Moctezuma ◽  
...  

The purpose of this study was to evaluate the efficiency of the Au-TiO2 catalyst in the degradation of nonylphenol polyethylene glycol (NPEG). In the first part of the study, the catalyst was synthesized and characterized. Initially, the catalyst (TiO2 Degussa P-25) was doped with gold precursor salts (HAuCl4) at different concentrations (5, 10, and 15%) and the photodeposition method with UV light. It was determined by diffuse reflectance (DF) and scanning electron microscopy (SEM) that the photodeposition method was effective for the inclusion of gold particles on the surface. The catalyst band gap showed a reduction to 2.9 e.v (compared to TiO2 Degussa P-25), and it was observed that the gold-doped catalyst showed absorption in the visible light range 500 to 600 nm. The percentage of deposited gold was determined by energy dispersive spectroscopy (EDS). In the second part of the study, various NPEG degradation experiments were performed; with the catalyst that showed the best conversion percentages of NPEG, the experimental data were analyzed using UV-Vis spectrophotometry and TOC (total organic carbon). With these results, a carbon-based mass balance and reaction kinetics were generated using the Langmuir–Hinshelwood (L–H) heterogeneous catalysis model. For the estimation of the kinetic constants, the non-linear regression of the Levenger–Marquardt algorithm was used. With these results, kinetic models of the degradation of the molecule and the generation and consumption of organic intermediate products (OIPs) were generated.

Author(s):  
Claudia Aguilar ◽  
Mayra Garcia ◽  
Carlos Montalvo ◽  
Edgar Moctezuma ◽  
Francisco Anguebes ◽  
...  

Gold nanoparticles, were deposited in titanium oxide (TiO2) Degussa-P25 with the Photodeposition method in the presence of UV light at different concentrations. It was determined by diffuse reflectance (DF), Scanning electron microscopy (SEM), that the Photodeposition method is effective for the inclusion of gold particles on the surface. The catalyst band gap showed a reduction to 2.9 e.V, as well as it was observed that the gold-doped catalyst shows absorption in the visible light range around 500 to 600 nm. The percentage of deposited gold nanoparticles was determined by energy dispersive spectroscopy (EDS). The experimental data were analyzed using different analytical techniques (UV-Vis spectrophotometry, TOC total organic carbon), with these results a carbon-based mass balance and reaction kinetics were generated using the Langmuir-Hinshelwood (LH-HW) heterogeneous catalysis model. For the estimation of the kinetic constants, the non-linear regression of the Levengerd Marquad algorithm was used, with these results, kinetic models of the degradation of the molecule and the generation and consumption of Organic Intermediate Products (OIP) were generated.


MRS Advances ◽  
2020 ◽  
Vol 5 (62) ◽  
pp. 3273-3282
Author(s):  
I. Cosme-Torres ◽  
M.G. Macedo-Miranda ◽  
S.M. Martinez-Gallegos ◽  
J.C. González-Juárez ◽  
G. Roa-Morales ◽  
...  

AbstractThe heterogeneous catalyst HTCMgFe was used in the degradation of the IC, through the heterogeneous photo-fenton treatment, this material in combination with H2O2 and UV light degraded the dye in 30 min at pH 3. As the amount of HTCMgFe increases the degradation it was accelerated because there are more active catalytic sites of Fe2+ on the surface of the material, which generates a greater amount of •OH radicals. The HTCMgFe was characterized by infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray energy dispersive elemental analysis (EDS). The UV-vis spectrum shows that the absorption bands belonging to the chromophore group of the IC disappear as the treatment time passes, indicating the degradation of the dye.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2019 ◽  
Vol 16 (31) ◽  
pp. 111-125
Author(s):  
Laudenor AMORIM ◽  
Santino Loruan Silvestre DE MELO ◽  
Sérgio Luís Moura DE PAIVA JÚNIOR ◽  
Enio Pontes DE DEUS

The development of more resistant and inexpensive materials were important for the emergence of composites, materials that are the result of the mixing of two or more distinct components with improved properties. Vegetable fibers reinforced polymer matrix composites help to reduce costs as well as to preserve product quality. Sisal fibers are important due to good impact resistance and availability. Thus, the characterization used infrared spectroscopy and UV-Vis diffuse reflectance. The main purpose was to adapt the methodology used, in order to improve fiber-matrix adhesion, but without risks of fiber defibrillation. Scanning electron microscopy was used to obtain the morphological characterization and the energy-dispersive X-Ray spectroscopy to describe the elemental chemical composition of the fibers. Chemical treatments using NaOH 2% and acetylation with acetic acid and acetic anhydride in the ratio (1:1,5) were important to observe the main changes such as the removal of impurities and the smaller amount of water absorbed in the acetylated fiber, which allows a better adhesion of the fibers with a polymer. After this, the fibers can be used to the production of polypropylene and polyethylene composites that are expected to apply in automotive parts such as bumpers, fuel tanks and internal coatings.


2015 ◽  
Vol 29 (10n11) ◽  
pp. 1540028 ◽  
Author(s):  
Mali Ding ◽  
Jie Han ◽  
Wei Qiu ◽  
Weijun Zhang ◽  
Wei Gao

This work studies the photocatalytic activity of zinc oxide ( ZnO ) nanopowder to recover silver ( Ag ) metal from low Ag + concentrated solution under artificial ultraviolet (UV) light. Benchmark titanium dioxide (P25 TiO 2) was used for comparison purpose. Experimental results indicated that ZnO exhibited superior performance for Ag recovery compared to TiO 2. Under optimal catalyst loading, the achieved Ag removal efficiencies were 100% and 99.94% at 0.2 g/L ZnO (1 h) and 2 g/L TiO 2 (2 h), respectively. An induction period at low concentration of TiO 2 (0.1 g/L) was observed and a mechanism was proposed. The photodissolution of ZnO was assessed and proved to be negligible. Recovered pure Ag metal was characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM), showing a promising effective Ag recovery technology using ZnO photocatalyst.


2015 ◽  
Vol 230 ◽  
pp. 297-302 ◽  
Author(s):  
Oksana V. Livitska ◽  
Nataliya Yu. Strutynska ◽  
Igor V. Zatovsky ◽  
Nikolay S. Slobodyanik

The interaction in the systemsMII2P4O12-MICl (MINO3) (MI– Li, Na, K;MII– Mg, Co, Ni, Zn) was investigated in temperature range 1073-673 K. The conditions of formation phosphates: Li3PO4,MIMIIPO4(MI– Na, K), Na4MII3(PO4)2P2O7, Na9Co3(PO4)5have been established. Obtained crystalline phases have been investigated using X-ray powder diffraction, Diffuse reflectance, Raman and FTIR spectroscopy and scanning electron microscopy methods.


1992 ◽  
Vol 40 (6) ◽  
pp. 751-758 ◽  
Author(s):  
P Lea ◽  
D K Gross

High-voltage (15-30 kV) field emission scanning electron microscopy (FESEM) was used to evaluate the effects of gold particle size and protein concentration on the formation of protein-gold complexes. Six colloidal gold sols were prepared, ranging in diameter from 7.6 to 39.8 nm. The minimal protecting amounts (m.p.a.) of protein A and goat anti-rabbit antibody (GAR) were experimentally determined. Gold particles were conjugated at the m.p.a., one half the m.p.a., and ten times the m.p.a. for both proteins, and protein-gold complexes prepared for FESEM. The smallest colloidal gold particles required the most protein per milliliter of gold suspension for stabilization. Transmission electron microscopy was found to be the preferred method for accurate sizing of gold particles, whereas FESEM of protein-gold complexes permitted visualization of a protein halo around a spherical gold core. Protein halo width varied significantly with changes in gold particle size. Measurements of protein halos indicated that conjugation with the m.p.a. of protein A resulted in the thickest protein layers for all gold sizes. GAR conjugation with the m.p.a. again produced the thickest protein layers. However, GAR halos were significantly smaller than those obtained with protein A conjugation. The proteins used showed similar adsorption patterns for the larger gold particles. For smaller gold particles, proteins may act differently, and these complexes should be further characterized by low-voltage FESEM.


2014 ◽  
Vol 699 ◽  
pp. 245-250
Author(s):  
Afrouz Baharvand ◽  
Alias Mohd Yusof ◽  
Rusmidah Ali ◽  
Mohd Marsin Sanagi ◽  
Sheela Chandren ◽  
...  

Hollow anatase titania spheres have been synthesized using hydrothermally–prepared carbon spheres as the template. Here, the combination of hydrothermal process with sol–gel followed by calcination in air was done in order to obtain hollow anatase TiO2 spheres by utilizing fructose and tetrabutyl titanate (TBT) as the precursors. The structure and morphology of the products were characterized using various techniques, including Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermal gravimetric and differential thermal analysis (TG–DTA), scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). XRD showed that all peaks of TiO2 correspond to anatase crystalline phase. The BET surface area of the hollow spheres was about 22 m2g-1. The photocatalytic activity of the hollow anatase TiO2 was measured under UV light using γ-lindane as the target pollutant and was compared to commercially available TiO2.


2017 ◽  
Vol 888 ◽  
pp. 121-125 ◽  
Author(s):  
Syazwani Baharom ◽  
Sufizar Ahmad ◽  
Muhamad Izranuddin Mohd Ramli

Silica foams with 50% – 70% porosity have been developed by mixing silica powder, polyethylene glycol (PEG) and carboxymethyl cellulose (CMC) into distilled water to make slurry. Polyurethane foam (PU) as the template is immersed into the slurry with 45 wt.%, 50 wt.% and 55 wt.%. of silica composition and finally sintered at 1100°C, 1200°C, 1300°C and 1400°C. Several tests which are morphological analysis, porosity and density test, and compressive strength test are compulsory to determine the physical and mechanical of the silica foam. The morphology of the foam has been observed using Scanning Electron Microscopy (SEM) and the result of pore size distribution is in the range of 255.91 μm to 489.14 μm. The porosity and density obtained from the porosity and density test was 50%-73.66% and 0.5499 g/cm³ up to 0.9757 g/cm³, respectively. Meanwhile, the compressive strength of sintered silica foam obtained is 0.01471 N/mm² up to 0.1467 N/mm².


2017 ◽  
pp. 106-115
Author(s):  
Isnaya Khamida Zulfah ◽  
Hari Sutrisno

Titanium dioksida (TiO2)merupakan semikonduktor yang memiliki fungsi sebagai fotokatalis, sel surya, anti bakteri, anti polutan, dan anti buram. Salah satu cara untuk meningkatkan aktifitas fungsional  TiO2dengan menggeser daerah aktifitas atau energi celah pita (Eg) dari sinar ultra violet (UV) ke daerah sinar tampak melalui penambahan zat pensensitif TiO2.Pada penelitian ini, perak klorida (AgCl) digunakan sebagai zat pensensitif TiO2. Tujuan penelitian ini untuk mengetahui pengaruh variasi perbandingan mol awal [Ti8O12(H2O)24]8.Cl8.HCl.7H2O dengan AgNO3 terhadap sifat-sifat fisik TiO2 tersensitifkan AgCl (TiO2@AgCl) yang disintesis dengan metode pengendapan basah dalam suasana asam. Variasi perbandingan awal yang digunakan yaitu perbandingan mol [Ti8O12(H2O)24]8.Cl8.HCl.7H2O :mol AgNO3sebesar 1:9, 1:10, 1:11, 1:12, dan 1:13yang dilarutkan dalam pelarut etanol (total pelarut 37.5 mL). Sampel padat TiO2@AgCl dihasilkan dengan metode pengendapan basah dalam kondisi asam melalui pengontrolan asam HNO3 pada pH~1. Sampel dihasilkan dari penguapan filtrat yang  bebas dari endapan AgCl, hingga volume yang didapat setengah dari volume awal. Sampel TiO2@AgCl dikarakterisasi dengan berbagai instrumen: Difraktometer Sinar-X (XRD),Scanning Electron Microscopy-Electron Dispersive X-Ray Analyzer (SEM-EDAX), dan Spektrofotometer UV-Vis Diffuse Reflectance. Hasil penelitian menunjukkan semua sampel TiO2@AgCl berisi 1 fasa nanopartikel (nanokristalit) TiO2 dan 3 fasa kristal yaitu rutil, anatas, dan AgCl.TiO2@AgCl memiliki bentuk morfologi berupa mikrosferik dengan ukuran berkisar 0.5-1 μm. Berdasarkan hasil analisisdengan spektrofotometer UV-Vis Diffuse Reflectance menunjukkan semua sampel TiO2@AgCl mengabsorbsi sinar ultra violet (UV) dengan Eg sebesar 2.87-3.89 eV, dan sinar tampak dengan Eg sebesar 1.60-2.40 eV. Titanium dioxide (TiO2) is a semiconductor that can be applied in the field of photocatalyst, solar cell, anti-bacterial, anti-pollutants, and anti-fogging. The functional activity of TiO2 can be increased by shifting the activity area from ultraviolet (UV) to visible through the addition of sensitizer. In this research, silver chloride (AgCl) was used as a sensitizer The objective of the research is to study the effect of the initial mole comparison of [Ti8O12(H2O)24]8.Cl8.HCl.7H2O and AgNO3on the physical properties of AgCl-sensitized TiO2(TiO2@AgCl). All TiO2@AgCl were synthesized using the wet chemical precipitation method under acidic conditions by the addition of a concentrated HNO3 with pH ~ 1. The initial comparison variation used was the mole ratio of [Ti8O12(H2O)24]8.Cl8.HCl.7H2O  : AgNO3 of 1: 9, 1:10, 1:11, 1:12, and 1:13. Each of these materials was dissolved in ethanol to 37.5 ml. All samples were produced from evaporation of filtrate free from AgCl precipitate, until the volume obtained half of the initial volume. The solid samples were characterized using X-Ray Diffractometer (XRD), Scanning Electron Microscopy-Electron Dispersive X-Ray Analyzer (SEM-EDAX), and UV-Vis spectrophotometer Diffuse Reflectance.The results showed that all samples of TiO2@AgCl consisted of 1 phase of TiO2-nanoparticles and 3 phases of rutile, anatase and AgCl crystals. The morphology of TiO2@AgCl is microspheric with a size ranging from 0.5-1 μm. Based on the results of the analysis with the UV-Vis spectrophotometer Diffuse Reflectance showed that all samples of TiO2@AgCl absorb ultraviolet (UV) rays with bandgap (Eg) ranging from 2.87 to 3.89 eV, and the visible light with Eg ranges from 1.60 to 2.40 eV.


Sign in / Sign up

Export Citation Format

Share Document