scholarly journals The State of Immunotherapy in Hepatobiliary Cancers

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2096
Author(s):  
Farhan Z. Ilyas ◽  
Joal D. Beane ◽  
Timothy M. Pawlik

Hepatobiliary cancers, including hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and gallbladder carcinoma (GBC), are lethal cancers with limited therapeutic options. Curative-intent treatment typically involves surgery, yet recurrence is common and many patients present with advanced disease not amenable to an operation. Immunotherapy represents a promising approach to improve outcomes, but the immunosuppressive tumor microenvironment of the liver characteristic of hepatobiliary cancers has hampered the development and implementation of this therapeutic approach. Current immunotherapies under investigation include immune checkpoint inhibitors (ICI), the adoptive transfer of immune cells, bispecific antibodies, vaccines, and oncolytic viruses. Programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are two ICIs that have demonstrated utility in HCC, and newer immune checkpoint targets are being tested in clinical trials. In advanced CCA and GBC, PD-1 ICIs have resulted in antitumor responses, but only in a minority of select patients. Other ICIs are being investigated for patients with CCA and GBC. Adoptive transfer may hold promise, with reports of complete durable regression in metastatic CCA, yet this therapeutic approach may not be generalizable. Alternative approaches have been developed and promising results have been observed, but clinical trials are needed to validate their utility. While the treatment of hepatobiliary cancers involves unique challenges that these cancers present, the progress seen with ICIs and adoptive transfer has solidified immunotherapy as an important approach in these challenging patients with few other effective treatment options.

2018 ◽  
Vol 11 ◽  
pp. 175628481880807 ◽  
Author(s):  
Aaron C. Tan ◽  
David L. Chan ◽  
Wasek Faisal ◽  
Nick Pavlakis

Metastatic gastric cancer is associated with a poor prognosis and novel treatment options are desperately needed. The development of targeted therapies heralded a new era for the management of metastatic gastric cancer, however results from clinical trials of numerous targeted agents have been mixed. The advent of immune checkpoint inhibitors has yielded similar promise and results from early trials are encouraging. This review provides an overview of the systemic treatment options evaluated in metastatic gastric cancer, with a focus on recent evidence from clinical trials for targeted therapies and immune checkpoint inhibitors. The failure to identify appropriate predictive biomarkers has hampered the success of many targeted therapies in gastric cancer, and a deeper understanding of specific molecular subtypes and genomic alterations may allow for more precision in the application of novel therapies. Identifying appropriate biomarkers for patient selection is essential for future clinical trials, for the most effective use of novel agents and in combination approaches to account for growing complexity of treatment options.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5065
Author(s):  
Albert Jang ◽  
David M. Adler ◽  
Grant P. Rauterkus ◽  
Mehmet A. Bilen ◽  
Pedro C. Barata

For decades, limited options existed to treat metastatic genitourinary cancers, including treatment options that could be classified as immunotherapy. Historically, immunotherapy centered on systemic cytokines for the treatment of metastatic kidney cancer, which had several adverse effects, as well as the Bacillus Calmette–Guérin vaccine for non-metastatic bladder cancer. Within the past decade, advances in immunotherapy have led to several approvals from the United States Food and Drug Administration, particularly in the field of immune checkpoint inhibition. Immune checkpoint inhibitors (ICIs) are now being used extensively to treat multiple solid tumors, including kidney and bladder cancers, and they are also being tested in many other cancers. Despite encouraging data from phase 2/3 clinical trials, less is known about biomarkers that may predict better response to ICIs. The effect of ICIs in genitourinary cancers is heterogeneous, with some tumor types having little clinical data available, or ICIs having limited activity in other tumors. In this review, we briefly discuss approved immunotherapy agents prior to the time of ICIs. Then, given the emergence of this class of agents, we summarize the several important ICIs and the clinical trials that led to their approval. Finally, we mention ongoing and future clinical trials.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1484
Author(s):  
Hiroyuki Ando ◽  
Kunihiro Suzuki ◽  
Toyoshi Yanagihara

Immune-checkpoint inhibitors (ICIs) targeting cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed cell death-1 (PD-1), and programmed cell death-1-ligand 1 (PD-L1) have become new treatment options for various malignancies. ICIs bind to immune-checkpoint inhibitory receptors or to the foregoing ligands and block inhibitory signals to release the brakes on the immune system, thereby enhancing immune anti-tumor responses. On the other hand, unlike conventional chemotherapies, ICIs can cause specific side effects, called immune-related adverse events (irAEs). These toxicities may affect various organs, including the lungs. ICI-related pneumonitis (ICI-pneumonitis) is not the most frequent adverse event, but it is serious and can be fatal. In this review, we summarize recent findings regarding ICI-pneumonitis, with a focus on potential pathogenesis and treatment.


2020 ◽  
Vol 9 (1) ◽  
pp. 223 ◽  
Author(s):  
Frank Gellrich ◽  
Marc Schmitz ◽  
Stefan Beissert ◽  
Friedegund Meier

Until recently, distant metastatic melanoma was considered refractory to systemic therapy. A better understanding of the interactions between tumors and the immune system and the mechanisms of regulation of T-cells led to the development of immune checkpoint inhibitors. This review summarizes the current novel data on the treatment of metastatic melanoma with anti-programmed cell death protein 1 (PD-1) antibodies and anti-PD-1-based combination regimens, including clinical trials presented at major conference meetings. Immune checkpoint inhibitors, in particular anti-PD-1 antibodies such as pembrolizumab and nivolumab and the combination of nivolumab with the anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) antibody ipilimumab can achieve long-term survival for patients with metastatic melanoma. The anti-PD-1 antibodies nivolumab and pembrolizumab were also approved for adjuvant treatment of patients with resected metastatic melanoma. Anti-PD-1 antibodies appear to be well tolerated, and toxicity is manageable. Nivolumab combined with ipilimumab achieves a 5 year survival rate of more than 50% but at a cost of high toxicity. Ongoing clinical trials investigate novel immunotherapy combinations and strategies (e.g., Talimogene laherparepvec (T-VEC), Bempegaldesleukin (BEMPEG), incorporation or sequencing of targeted therapy, incorporation or sequencing of radiotherapy), and focus on poor prognosis groups (e.g., high tumor burden/LDH levels, anti-PD-1 refractory melanoma, and brain metastases).


2020 ◽  
Vol 21 (22) ◽  
pp. 8627 ◽  
Author(s):  
June Kyu Hwang ◽  
JinWoo Hong ◽  
Chae-Ok Yun

Immuno-oncology (IO) has been an active area of oncology research. Following US FDA approval of the first immune checkpoint inhibitor (ICI), ipilimumab (human IgG1 k anti-CTLA-4 monoclonal antibody), in 2011, and of the first oncolytic virus, Imlygic (talimogene laherparepvec), in 2015, there has been renewed interest in IO. In the past decade, ICIs have changed the treatment paradigm for many cancers by enabling better therapeutic control, resuming immune surveillance, suppressing tumor immunosuppression, and restoring antitumor immune function. However, ICI therapies are effective only in a small subset of patients and show limited therapeutic potential due to their inability to demonstrate efficacy in ‘cold’ or unresponsive tumor microenvironments (TMEs). Relatedly, oncolytic viruses (OVs) have been shown to induce antitumor immune responses, augment the efficacy of existing cancer treatments, and reform unresponsive TME to turn ‘cold’ tumors ‘hot,’ increasing their susceptibility to checkpoint blockade immunotherapies. For this reason, OVs serve as ideal complements to ICIs, and multiple preclinical studies and clinical trials are demonstrating their combined therapeutic efficacy. This review will discuss the merits and limitations of OVs and ICIs as monotherapy then progress onto the preclinical rationale and the results of clinical trials of key combination therapies.


Cancers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 412 ◽  
Author(s):  
Masatoshi Kudo

Systemic therapy for hepatocellular carcinoma (HCC) has changed drastically since the introduction of the molecular targeted agent sorafenib in 2007. Although sorafenib expanded the treatment options for extrahepatic spread (EHS) and vascular invasion, making long-term survival of patients with advanced disease achievable to a certain extent, new molecular-targeted agents are being developed as alternatives to sorafenib due to shortcomings such as its low response rate and high toxicity. Every single one of the many drugs developed during the 10-year period from 2007 to 2016 was a failure. However, during the two-year period from 2017 through 2018, four drugs—regorafenib, lenvatinib, cabozantinib, and ramucirumab—emerged successfully from clinical trials in quick succession and became available for clinical use. The efficacy of combination therapy with transcatheter arterial chemoembolization (TACE) plus sorafenib was also first demonstrated in 2018. Recently, immune checkpoint inhibitors have been applied to HCC treatment and many phase III clinical trials are ongoing, not only on monotherapy with nivolumab, pembrolizumab, and tislelizumab, but also on combination therapy with checkpoint inhibitors, programmed death-1 (PD-1) or PD-ligand 1 (PD-L1) antibody plus a molecular targeted agent (bevacizumab) or the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) antibody, tremelimumab. These combination therapies have shown higher response rates than PD-1/PD-L1 monotherapy alone, suggesting a synergistic effect by combination therapy in early phases; therefore, further results are eagerly awaited.


2018 ◽  
Vol 2 (3) ◽  
Author(s):  
Monica Girotra ◽  
Aaron Hansen ◽  
Azeez Farooki ◽  
David J Byun ◽  
Le Min ◽  
...  

AbstractClinical trials in the past decade have established the antitumor effects of immune checkpoint inhibition as a revolutionary treatment for cancer. Namely, blocking antibodies to cytotoxic T-lymphocyte antigen 4 and programmed death 1 or its ligand have reached routine clinical use. Manipulation of the immune system is not without side effects, and autoimmune toxicities often known as immune-related adverse events (IRAEs) are observed. Endocrine IRAEs, such as hypophysitis, thyroid dysfunction, and insulin-dependent diabetes mellitus, can present with unique profiles that are not seen with the use of traditional chemotherapeutics. In this Review, we discuss the current hypotheses regarding the mechanism of these endocrinopathies and their clinical presentations. Further, we suggest guidelines and algorithms for patient management and future clinical trials to optimize the detection and treatment of immune checkpoint–related endocrinopathies.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1271
Author(s):  
Alexander Malogolovkin ◽  
Nizami Gasanov ◽  
Alexander Egorov ◽  
Marianna Weener ◽  
Roman Ivanov ◽  
...  

Recent cancer immunotherapy breakthroughs have fundamentally changed oncology and revived the fading hope for a cancer cure. The immune checkpoint inhibitors (ICI) became an indispensable tool for the treatment of many malignant tumors. Alongside ICI, the application of oncolytic viruses in clinical trials is demonstrating encouraging outcomes. Dozens of combinations of oncolytic viruses with conventional radiotherapy and chemotherapy are widely used or studied, but it seems quite complicated to highlight the most effective combinations. Our review summarizes the results of clinical trials evaluating oncolytic viruses with or without genetic alterations in combination with immune checkpoint blockade, cytokines, antigens and other oncolytic viruses as well. This review is focused on the efficacy and safety of virotherapy and the most promising combinations based on the published clinical data, rather than presenting all oncolytic virus variations, which are discussed in comprehensive literature reviews. We briefly revise the research landscape of oncolytic viruses and discuss future perspectives in virus immunotherapy, in order to provide an insight for novel strategies of cancer treatment.


2021 ◽  
Vol 14 ◽  
pp. 175628482110244
Author(s):  
Vanessa Wookey ◽  
Axel Grothey

Colorectal cancer (CRC) is the third most common cancer type in both men and women in the USA. Most patients with CRC are diagnosed as local or regional disease. However, the survival rate for those diagnosed with metastatic disease remains disappointing, despite multiple treatment options. Cancer therapies for patients with unresectable or metastatic CRC are increasingly being driven by particular biomarkers. The development of various immune checkpoint inhibitors has revolutionized cancer therapy over the last decade by harnessing the immune system in the treatment of cancer, and the role of immunotherapy continues to expand and evolve. Pembrolizumab is an anti-programmed cell death protein 1 immune checkpoint inhibitor and has become an essential part of the standard of care in the treatment regimens for multiple cancer types. This paper reviews the increasing evidence supporting and defining the role of pembrolizumab in the treatment of patients with unresectable or metastatic CRC.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 561
Author(s):  
Anca Bobircă ◽  
Florin Bobircă ◽  
Ioan Ancuta ◽  
Alesandra Florescu ◽  
Vlad Pădureanu ◽  
...  

The advent of immunotherapy has changed the management and therapeutic methods for a variety of malignant tumors in the last decade. Unlike traditional cytotoxic chemotherapy, which works by interfering with cancer cell growth via various pathways and stages of the cell cycle, cancer immunotherapy uses the immune system to reduce malignant cells’ ability to escape the immune system and combat cell proliferation. The widespread use of immune checkpoint inhibitors (ICIs) over the past 10 years has presented valuable information on the profiles of toxic adverse effects. The attenuation of T-lymphocyte inhibitory mechanisms by ICIs results in immune system hyperactivation, which, as expected, is associated with various adverse events defined by inflammation. These adverse events, known as immune-related adverse events (ir-AEs), may affect any type of tissue throughout the human body, which includes the digestive tract, endocrine glands, liver and skin, with reports of cardiovascular, pulmonary and rheumatic ir-AEs as well. The adverse events that arise from ICI therapy are both novel and unique compared to those of the conventional treatment options. Thus, they require a multidisciplinary approach and continuous updates on the diagnostic approach and management.


Sign in / Sign up

Export Citation Format

Share Document