scholarly journals Nematostella vectensis, an Emerging Model for Deciphering the Molecular and Cellular Mechanisms Underlying Whole-Body Regeneration

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2692
Author(s):  
Eric Röttinger

The capacity to regenerate lost or injured body parts is a widespread feature within metazoans and has intrigued scientists for centuries. One of the most extreme types of regeneration is the so-called whole body regenerative capacity, which enables regeneration of fully functional organisms from isolated body parts. While not exclusive to this habitat, whole body regeneration is widespread in aquatic/marine invertebrates. Over the past decade, new whole-body research models have emerged that complement the historical models Hydra and planarians. Among these, the sea anemone Nematostella vectensis has attracted increasing interest in regard to deciphering the cellular and molecular mechanisms underlying the whole-body regeneration process. This manuscript will present an overview of the biological features of this anthozoan cnidarian as well as the available tools and resources that have been developed by the scientific community studying Nematostella. I will further review our current understanding of the cellular and molecular mechanisms underlying whole-body regeneration in this marine organism, with emphasis on how comparing embryonic development and regeneration in the same organism provides insight into regeneration specific elements.

1995 ◽  
Vol 347 (1319) ◽  
pp. 21-25 ◽  

Over the past three or four years, great strides have been made in our understanding of the proteins involved in recombination and the mechanisms by which recombinant molecules are formed. This review summarizes our current understanding of the process by focusing on recent studies of proteins involved in the later steps of recombination in bacteria. In particular, biochemical investigation of the in vitro properties of the E. coli RuvA, RuvB and RuvC proteins have provided our first insight into the novel molecular mechanisms by which Holliday junctions are moved along DNA and then resolved by endonucleolytic cleavage.


2021 ◽  
Vol 9 ◽  
Author(s):  
Vivien Bothe ◽  
Igor Schneider ◽  
Nadia B. Fröbisch

Regeneration, the replacement of body parts in a living animal, has excited scientists for centuries and our knowledge of vertebrate appendage regeneration has increased significantly over the past decades. While the ability of amniotes to regenerate body parts is very limited, members of other vertebrate clades have been shown to have rather high regenerative capacities. Among tetrapods (four-limbed vertebrates), only salamanders show unparalleled capacities of epimorphic tissue regeneration including replacement of organ and body parts in an apparently perfect fashion. The closest living relatives of Tetrapoda, the lungfish, show regenerative abilities that are comparable to those of salamanders and recent studies suggest that these high regenerative capacities may indeed be ancestral for bony fish (osteichthyans) including tetrapods. While great progress has been made in recent years in understanding the cellular and molecular mechanisms deployed during appendage regeneration, comparatively few studies have investigated gross morphological and histological features of regenerated fins and limbs. Likewise, rather little is known about how fin regeneration compares morphologically to salamander limb regeneration. In this study, we investigated the morphology and histology of regenerated fins in all three modern lungfish families. Data from histological serial sections, 3D reconstructions, and x-ray microtomography scans were analyzed to assess morphological features, quality and pathologies in lungfish fin regenerates. We found several anomalies resulting from imperfect regeneration in regenerated fins in all investigated lungfish species, including fusion of skeletal elements, additional or fewer elements, and distal branching. The similarity of patterns in regeneration abnormalities compared to salamander limb regeneration lends further support to the hypothesis that high regenerative capacities are plesiomorphic for sarcopterygians.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Marco Ragusa ◽  
Cristina Barbagallo ◽  
Duilia Brex ◽  
Angela Caponnetto ◽  
Matilde Cirnigliaro ◽  
...  

Over the past few years, noncoding RNAs (ncRNAs) have been extensively studied because of the significant biological roles that they play in regulation of cellular mechanisms. ncRNAs are associated to higher eukaryotes complexity; accordingly, their dysfunction results in pathological phenotypes, including cancer. To date, most research efforts have been mainly focused on how ncRNAs could modulate the expression of protein-coding genes in pathological phenotypes. However, recent evidence has shown the existence of an unexpected interplay among ncRNAs that strongly influences cancer development and progression. ncRNAs can interact with and regulate each other through various molecular mechanisms generating a complex network including different species of RNAs (e.g., mRNAs, miRNAs, lncRNAs, and circRNAs). Such a hidden network of RNA-RNA competitive interactions pervades and modulates the physiological functioning of canonical protein-coding pathways involved in proliferation, differentiation, and metastasis in cancer. Moreover, the pivotal role of ncRNAs as keystones of network structural integrity makes them very attractive and promising targets for innovative RNA-based therapeutics. In this review we will discuss: (1) the current knowledge on complex crosstalk among ncRNAs, with a special focus on cancer; and (2) the main issues and criticisms concerning ncRNAs targeting in therapeutics.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jamie A. Havrilak ◽  
Layla Al-Shaer ◽  
Noor Baban ◽  
Nesli Akinci ◽  
Michael J. Layden

Abstract Background The ability to regenerate body parts is a feature of metazoan organisms and the focus of intense research aiming to understand its basis. A number of mechanisms involved in regeneration, such as proliferation and tissue remodeling, affect whole tissues; however, little is known on how distinctively different constituent cell types respond to the dynamics of regenerating tissues. Preliminary studies suggest that a number of organisms alter neuronal numbers to scale with changes in body size. In some species with the ability of whole-body axis regeneration, it has additionally been observed that regenerates are smaller than their pre-amputated parent, but maintain the correct morphological proportionality, suggesting that scaling of tissue and neuronal numbers also occurs. However, the cell dynamics and responses of neuronal subtypes during nervous system regeneration, scaling, and whole-body axis regeneration are not well understood in any system. The cnidarian sea anemone Nematostella vectensis is capable of whole-body axis regeneration, with a number of observations suggesting the ability to alter its size in response to changes in feeding. We took advantage of Nematostella’s transparent and “simple” body plan and the NvLWamide-like mCherry fluorescent reporter transgenic line to probe the response of neuron populations to variations in body size in vivo in adult animals during body scaling and regeneration. Results We utilized the previously characterized NvLWamide-like::mCherry transgenic reporter line to determine the in vivo response of neuronal subtypes during growth, degrowth, and regeneration. Nematostella alters its size in response to caloric intake, and the nervous system responds by altering neuronal number to scale as the animal changes in size. Neuronal numbers in both the endodermal and ectodermal nerve nets decreased as animals shrunk, increased as they grew, and these changes were reversible. Whole-body axis regeneration resulted in regenerates that were smaller than their pre-amputated size, and the regenerated nerve nets were reduced in neuronal number. Different neuronal subtypes had distinct responses during regeneration, including consistent, not consistent, and conditional increases in number. Conditional responses were regulated, in part, by the size of the remnant fragment and the position of the amputation site. Regenerates and adults with reduced nerve nets displayed normal behaviors, indicating that the nerve net retains functionality as it scales. Conclusion These data suggest that the Nematostella nerve net is dynamic, capable of scaling with changes in body size, and that neuronal subtypes display differential regenerative responses, which we propose may be linked to the scale state of the regenerating animals.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1083 ◽  
Author(s):  
Muhammad Zaeem Noman ◽  
Meriem Hasmim ◽  
Audrey Lequeux ◽  
Malina Xiao ◽  
Caroline Duhem ◽  
...  

Initially believed to be a disease of deregulated cellular and genetic expression, cancer is now also considered a disease of the tumor microenvironment. Over the past two decades, significant and rapid progress has been made to understand the complexity of the tumor microenvironment and its contribution to shaping the response to various anti-cancer therapies, including immunotherapy. Nevertheless, it has become clear that the tumor microenvironment is one of the main hallmarks of cancer. Therefore, a major challenge is to identify key druggable factors and pathways in the tumor microenvironment that can be manipulated to improve the efficacy of current cancer therapies. Among the different tumor microenvironmental factors, this review will focus on hypoxia as a key process that evolved in the tumor microenvironment. We will briefly describe our current understanding of the molecular mechanisms by which hypoxia negatively affects tumor immunity and shapes the anti-tumor immune response. We believe that such understanding will provide insight into the therapeutic value of targeting hypoxia and assist in the design of innovative combination approaches to improve the efficacy of current cancer therapies, including immunotherapy.


2011 ◽  
Vol 301 (6) ◽  
pp. E1065-E1069 ◽  
Author(s):  
Patrick E. MacDonald

Whole body energy balance is ensured by the exquisite control of insulin secretion, the dysregulation of which has serious consequences. Although a great deal has been learned about the control of insulin secretion from pancreatic β-cells in the past 30 years, there remains much to be understood about the molecular mechanisms and interactions that underlie the precise control of this process. Numerous molecular interactions at the plasma membrane mediate the excitatory and amplifying events involved in insulin secretion; this includes interactions between ion channels, signal transduction machinery, and exocytotic proteins. The present Perspectives article considers evidence that key membrane and membrane-associated proteins essential to insulin secretion are regulated in concert as a functional unit, ensuring an integrated excitatory and exocytotic response to the signals that control insulin secretion.


ISRN Oncology ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Rita Nahta

The past decade of research into HER2-overexpressing breast cancer has provided significant insight into the mechanisms by which HER2 signaling drives tumor progression, as well as potential mechanisms by which cancer cells escape the anticancer activity of HER2-targeted therapy. Many of these preclinical findings have been translated into clinical development, resulting in novel combinations of HER2-targeted therapies and combinations of trastuzumab plus inhibitors of resistance pathways. In this paper, we will discuss proposed mechanisms of trastuzumab resistance, including epitope masking, cross signaling from other cell surface receptors, hyperactive downstream signaling, and failure to induce antibody-dependent cellular cytotoxicity. In addition, we will discuss the molecular mechanisms of action of dual HER2 inhibition, specifically the combination of trastuzumab plus lapatinib or trastuzumab with pertuzumab. We will also discuss data supporting therapeutic combinations of trastuzumab with agents targeted against molecules implicated in trastuzumab resistance. The roles of insulin-like growth factor-I receptor and the estrogen receptor are discussed in the context of resistance to HER2-targeted therapies. Finally, we will examine the major issues that need to be addressed in order to translate these combinations from the bench to the clinic, including the need to establish relevant biomarkers to select for those patients who are most likely to benefit from a particular drug combination.


2017 ◽  
Author(s):  
Rose Z. Hill ◽  
Takeshi Morita ◽  
Rachel B. Brem ◽  
Diana M. Bautista

AbstractSphingosine 1-phosphate (S1P) is a bioactive signaling lipid associated with a variety of chronic pain and itch disorders. S1P signaling has been linked to cutaneous pain, but its role in itch has not yet been studied. Here we find that S1P triggers itch and pain in mice in a concentration-dependent manner, with low levels triggering acute itch alone, and high levels triggering both pain and itch. Calcium imaging and electrophysiological experiments revealed that S1P signals via S1PR3 and TRPA1 in a subset of pruriceptors, and via S1PR3 and TRPV1 in a subset of heat nociceptors. And in behavioral assays, S1P-evoked itch was selectively lost in mice lacking TRPA1, whereas S1P-evoked acute pain and heat hypersensitivity were selectively lost in mice lacking TRPV1. We conclude that S1P acts via different cellular and molecular mechanisms to trigger itch and pain. Our discovery elucidates the diverse roles that S1P signaling plays in somatosensation and provides insight into how itch and pain are discriminated in the periphery.Significance StatementItch and pain are major health problems with few effective treatments. Here, we show that the pro-inflammatory lipid S1P and its receptor S1PR3 trigger itch and pain behaviors via distinct molecular and cellular mechanisms. Our results provide a detailed understanding of the roles that S1P and S1PR3 play in somatosensation, highlighting their potential as targets for analgesics and antipruritics, and provide new insight into the mechanistic underpinnings of itch versus pain discrimination in the periphery.


2021 ◽  
Vol 22 (3) ◽  
pp. 1318
Author(s):  
Imran Khan ◽  
Mohammad Hassan Baig ◽  
Sadaf Mahfooz ◽  
Moniba Rahim ◽  
Busra Karacam ◽  
...  

Autophagy is a process essential for cellular energy consumption, survival, and defense mechanisms. The role of autophagy in several types of human cancers has been explicitly explained; however, the underlying molecular mechanism of autophagy in glioblastoma remains ambiguous. Autophagy is thought to be a “double-edged sword”, and its effect on tumorigenesis varies with cell type. On the other hand, autophagy may play a significant role in the resistance mechanisms against various therapies. Therefore, it is of the utmost importance to gain insight into the molecular mechanisms deriving the autophagy-mediated therapeutic resistance and designing improved treatment strategies for glioblastoma. In this review, we discuss autophagy mechanisms, specifically its pro-survival and growth-suppressing mechanisms in glioblastomas. In addition, we try to shed some light on the autophagy-mediated activation of the cellular mechanisms supporting radioresistance and chemoresistance in glioblastoma. This review also highlights autophagy’s involvement in glioma stem cell behavior, underlining its role as a potential molecular target for therapeutic interventions.


2016 ◽  
Vol 114 (1) ◽  
pp. 154-159 ◽  
Author(s):  
Juan Lorenzo Pablo ◽  
Geoffrey S. Pitt

KCNQ2/3 (Kv7.2/7.3) channels and voltage-gated sodium channels (VGSCs) are enriched in the axon initial segment (AIS) where they bind to ankyrin-G and coregulate membrane potential in central nervous system neurons. The molecular mechanisms supporting coordinated regulation of KCNQ and VGSCs and the cellular mechanisms governing KCNQ trafficking to the AIS are incompletely understood. Here, we show that fibroblast growth factor 14 (FGF14), previously described as a VGSC regulator, also affects KCNQ function and localization. FGF14 knockdown leads to a reduction of KCNQ2 in the AIS and a reduction in whole-cell KCNQ currents. FGF14 positively regulates KCNQ2/3 channels in a simplified expression system. FGF14 interacts with KCNQ2 at a site distinct from the FGF14–VGSC interaction surface, thus enabling the bridging of NaV1.6 and KCNQ2. These data implicate FGF14 as an organizer of channel localization in the AIS and provide insight into the coordination of KCNQ and VGSC conductances in the regulation of membrane potential.


Sign in / Sign up

Export Citation Format

Share Document