scholarly journals Basic Bio-Tribological Performance of Insulating Si3N4-Based Ceramic as Human Body Replacement Joints

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 938
Author(s):  
Huaqiang Li ◽  
Wei Chen ◽  
Hongxing Shi ◽  
Chen Zhang ◽  
Xingwei Liu ◽  
...  

The paper presents an in-depth study of the bio-tribological performance on silicon nitride matrix ceramic composites containing hexagonal boron nitride (hBN) with different content. Ultra-high molecular weight polyethylene (UHMWPE) under simulated body fluid lubrication, and the simulated body fluid-lubricated sliding tests were performed on a universal friction and wear tester. The results showed that the incorporation of hBN into silicon nitride matrix reduced the friction coefficients from 0.27 for Si3N4/UHMWPE pair to 0.16 for Si3N4-20%hBN/UHMWPE with full immersion in simulated body fluid lubrication. Scanning electron microscopy (SEM), laser scanning microscope, X-ray photoelectron spectroscopy (XPS) were utilized to characterize the wear surface. The analysis results indicated that, with simulated body fluid lubrication, the interfacial between hBN and Si3N4 facilitated the wear pits to form on the wear surface, and the residual wear particles deposited in the pits. Then, tribochemical products were formed on the wear surface, which protected and smoothed the wear surface of the sliding pair in the simulated body fluid.

1999 ◽  
Vol 599 ◽  
Author(s):  
F. Barrère ◽  
P. Layrolle ◽  
C. A. van Blitterswijk ◽  
K. de Groot

AbstractThe aim of this study was to accelerate the formation of biomimetic Calcium-Phosphate (Ca-P) coatings on Ti6Al4V by using a 5 times more concentrated Simulated Body Fluid (SBFx5) than the regular SBF. The production of SBFx5 was possible by decreasing the pH of the solution to approximately 6 with CO2 gas. The release of this mildly acidic gas allowed the formation of a Ca-P film after 4h of immersion at pH=6.8. The structure of this coating was an amorphous carbonated Ca-P. In addition, our experiments showed that the presence of Mg2+ was absolutely necessary for the Ca-P coating formation on Ti6Al4V substrate. Mg2+ is a crystal growth inhibitor and favored the heterogeneous nucleation. Furthermore, depth profile X-Ray Photoelectron Spectroscopy showed that Ca-P nucleation on the passive Titanium oxide (TiO2) passive layer was initiated by Ca2+ and Mg2+. The attachment of this Ca-P coating resulted probably from chemical bonds such as P-O-Ti and Ca-O-Ti. Ca was more present at the coating/substrate interface than P. Thereby Ca-O-Ti seems to be favored.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 724 ◽  
Author(s):  
Ze-Xin Wang ◽  
Guan-Qun Chen ◽  
Liang-Yu Chen ◽  
Lei Xu ◽  
Sheng Lu

Bio-ceramic coatings were synthesized on ZK60 magnesium alloys by micro-arc oxidation (MAO). The degradation behavior of the ZK60 alloys with and without MAO coating in the simulated body fluid (SBF) was studied. The samples were characterized by means of scanning electron microscopy (SEM), laser scanning confocal microscopy (CLSM), and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) was used to study the degradation behavior. The results showed that the porous MAO coating mainly consisted of MgO, Mg2SiO4, Mg3(PO4)2, and CaCO3. The pH values of both coated and uncoated samples increased over time. However, the pH values of the SBF for coated samples always maintained a lower level compared with those for the uncoated samples. Thereby, the coated samples showed a much lower degradation rate. After immersion in SBF for 5 days, corrosion product containing Ca and P was found on both samples, while the deposition was more active on the coated samples. The degradation models for the uncoated and coated samples in the SBF are also proposed and discussed.


Author(s):  
R Westergård ◽  
A Åhlin ◽  
N Axén ◽  
S Hogmark

The friction and wear behaviour of a series of new Si3N4-SiC-based ceramic composites, intended for face seal applications, has been investigated with cylinder-on-disc equipment. In particular, the influence of water and vapour on the friction, wear and tribo-film formation has been studied. The ceramics consisted of Sis3N4 and SiC in the proportions 7:3, to which 0, 4 or 8 wt% of hexagonal boron nitride was added as a solid lubricant. All specimens were produced by hot isostatic pressing. X-ray diffraction and scanning electron microscopy were used to reveal the phase composition and microstructure respectively. The hardness was assessed using Vickers indentation. The chemical composition of the tribo-films was studied with X-ray photoelectron spectroscopy. The major results are that both friction and wear showed distinct low and high levels. The high friction level corresponded to friction coefficients between 0.4 and 0.9 and wear rates between 104 and 105 μm3/Nm. The low level corresponded to friction coefficients between 0.02 and 0.1, and wear rates between 10 and 103 μm3/Nm. When water or saturated vapour was present in the tribo-system, both friction and wear were low. All surfaces produced in the low level were smooth, covered by a thin well-adhering tribo-film while the high level resulted in strongly oxidized and patchy tribo-film covered by wear particles.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1740 ◽  
Author(s):  
Darja Steiner Petrovič ◽  
Djordje Mandrino ◽  
Božidar Šarler ◽  
Jelena Horky ◽  
Andrea Ojdanic ◽  
...  

Two binary biodegradable Mg-alloys and one ternary biodegradable Mg-alloy (Mg-0.3Ca, Mg-5Zn and Mg-5Zn-0.3Ca, all in wt%) were investigated. Surface-sensitive X-ray photoelectron spectroscopy analyses (XPS) of the alloy surfaces before and after immersion in simulated body fluid (SBF) were performed. The XPS analysis of the samples before the immersion in SBF revealed that the top layer of the alloy might have a non-homogeneous composition relative to the bulk. Degradation during the SBF immersion testing was monitored by measuring the evolution of H2. It was possible to evaluate the thickness of the sample degradation layers after the SBF immersion based on scanning electron microscopy (SEM) of the tilted sample. The thickness was in the order of 10–100 µm. The typical bio-corrosion products of all of the investigated alloys consisted of Mg, Ca, P and O, which suggests the formation of apatite (calcium phosphate hydroxide), magnesium hydrogen phosphate hydrate and magnesium hydroxide. The bioapplicability of the analyzed alloys with regard to surface composition and degradation kinetics is discussed.


2018 ◽  
Vol 784 ◽  
pp. 73-78
Author(s):  
Alexandra Kovalčíková ◽  
Michal Húlan ◽  
Richard Sedlák ◽  
Martin Fides ◽  
Csaba Balázsi ◽  
...  

Si3N4/hBN composites were fabricated by hot isostatic pressing at 1700°C/3h with 1, 3 and 5 wt. % micro-sized or nano-sized hexagonal boron nitride particles added to silicon nitride matrix. An indentation quench test method was used for estimation of thermal shock resistance of monolithic Si3N4and Si3N4/hBN composites. Thermal shock resistance of the composites increased with the increase of size and volume of hBN particles. The critical temperature difference for the composites with micro-sized hBN was significantly higher (over 900°C) compared to the monolithic silicon nitride (580°C).


2011 ◽  
Vol 299-300 ◽  
pp. 508-511
Author(s):  
Guo Chao Qi ◽  
Feng Jun Shan ◽  
Qiang Li ◽  
Jing Yuan Yu ◽  
Qu Kai Zhang

Magnesium apatite (MA, (Ca9Mg)(PO4)6(OH)2) and Hydroxyapatite (HA) coatings were synthesized on Ti6Al4V substrates by a sol-gel dip coating method. Glucose and bovine serum albumin (BSA) were added to the standard simulated body fluid (SBF) separately to form organic-containing simulated body fluids. MA and HA coatings were immersed in standard and organic modified SBF for time periods of 4, 7, 14, 21 and 28 days at 37±1°C. The surface dissolution and deposition behavior of the coatings after soaking were examined with Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The results show that glucose in SBF has no apparent effect on the deposition of new apatite from the solution. BSA in SBF shows retardation effect on the deposition of apatite by forming a protein dominant globular layer. This layer inhibits the further deposition of apatite from SBF solution.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Luanxia Chen ◽  
Zhanqiang Liu ◽  
Xin Wang ◽  
Qingqing Wang ◽  
Xiaoliang Liang

Abstract Micro-textured samples with different depths exhibit various contact surface morphology parameters including Sa, Sq, Ssk, and Sku, and material ratio curves. In this paper, the relationship between micro-textures and roughness parameters was investigated. The effect mechanism of micro-textures on the friction and wear through the height and functional roughness parameters was elucidated. Micro-textured samples presented more negative Ssk, higher Sku, and larger Svk with the increasing dimple depth. The pin-on-disc reciprocating tribological test results indicated that the more negative Ssk, higher Sku, and larger Svk presented lower friction coefficient under the constant Sa and Sq. The wear topographies for the flat and micro-textured specimens with various dimple depths were examined by laser scanning confocal microscope. X-ray photoelectron spectroscopy was employed to describe the formation of absorbed film and tribofilm on the worn surface of flat and micro-textured samples. It was confirmed that more negative Ssk, higher Sku, and material ratio curves with their relative parameters (smaller value of Spk, Sk, Smr1, and larger value of Svk) could be used for predicting the tribological performance of micro-textured samples.


2005 ◽  
Vol 284-286 ◽  
pp. 497-500 ◽  
Author(s):  
Jennifer Vandiver ◽  
Nelesh Patel ◽  
William Bonfield ◽  
Christine Ortiz

Dense, polycrystalline, synthetic hydroxyapatite (HA) was incubated for 36 days in modified simulated body fluid (SBF) with increased HCO3 - and reduced Cl- ion concentrations (27 and 120 mM, respectively) closer to actual blood plasma than typical SBF. The resulting precipitated apatite layer was characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements and found to be nonstoichiometric, calcium deficient (Ca/P~1.06), non-carbonate containing, and of intermediate hydrophilicity (advancing contact angle, qa=76.5±1.3°). The nanoscale surface topography of the SBF-incubated HA sample was imaged by tapping mode atomic force microscopy (TMAFM), observed to be ≤100 nm in thickness, and composed of three distinct morphologies. These topographically distinct regions were localized within individual grains and facets of the initial HA surface and included: hemispherical, globular structures (maximum lateral dimension, d=44.7±12.7 nm, peak-tovalley height, h=3.6±2.7 nm); elongated, needle-like structures (minimum lateral dimension, w=31.0±8.5 nm, d=104.4±31.1 nm, h=5.0±3.2 nm), and regions of larger, irregularly shaped structures that were relatively smooth (d=504.9±219.1 nm, h=104.0±51.7 nm).


Author(s):  
Da Zhang ◽  
Wei Chen ◽  
Xu Ai ◽  
Zheng-lin Lv

The tribological behaviors of Si3N4–hBN composites sliding against austenitic stainless steel at different relative humidities (RH25∼35%, RH55∼65%, and RH90% or higher) were investigated by using an MMW-1 type vertical universal tribometer. The morphological and chemical characterizations of the worn surfaces of the specimens were conducted by using scanning electron microscopy, energy-dispersive X-ray spectroscopy, laser scanning microscope, and X-ray photoelectron spectroscopy. The results showed that the friction coefficients of Si3N4–10%hBN/ASS sliding pairs were lowered to about 0.03 under the relative humidity of RH55∼65%. This was mainly attributed to the formation of a surface film (consisting of B2O3, SiO2, and Fe2O3) on the wear surface of the SN10/ASS pairs. The surface film lubricated and protected the wear surfaces of pin and disc. Under the relative humidity of RH25∼35%, the formation of the surface film was limited because of less water molecules. Under the relative humidity of RH90% or higher, a part of the water molecules in the air can easily deposit on the wear surfaces, so that the microcracks on the wear surfaces would be promoted to expand, resulting in the inability to form a continuous and stable surface film. Besides, for Si3N4/austenitic stainless steel pair, no tribofilm was formed on the surfaces, and higher friction coefficient and wear rate were obtained. When hBN content increased to 20% or higher, rough wear surface was covered by the wear debris layer mainly due to their poor physical and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document