Effects of Surface Roughness Parameters on Tribological Performance for Micro-textured Eutectic Aluminum–Silicon Alloy

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Luanxia Chen ◽  
Zhanqiang Liu ◽  
Xin Wang ◽  
Qingqing Wang ◽  
Xiaoliang Liang

Abstract Micro-textured samples with different depths exhibit various contact surface morphology parameters including Sa, Sq, Ssk, and Sku, and material ratio curves. In this paper, the relationship between micro-textures and roughness parameters was investigated. The effect mechanism of micro-textures on the friction and wear through the height and functional roughness parameters was elucidated. Micro-textured samples presented more negative Ssk, higher Sku, and larger Svk with the increasing dimple depth. The pin-on-disc reciprocating tribological test results indicated that the more negative Ssk, higher Sku, and larger Svk presented lower friction coefficient under the constant Sa and Sq. The wear topographies for the flat and micro-textured specimens with various dimple depths were examined by laser scanning confocal microscope. X-ray photoelectron spectroscopy was employed to describe the formation of absorbed film and tribofilm on the worn surface of flat and micro-textured samples. It was confirmed that more negative Ssk, higher Sku, and material ratio curves with their relative parameters (smaller value of Spk, Sk, Smr1, and larger value of Svk) could be used for predicting the tribological performance of micro-textured samples.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 635 ◽  
Author(s):  
Fang Han ◽  
Huaixing Wen ◽  
Jianjian Sun ◽  
Wei Wang ◽  
Yalong Fan ◽  
...  

This paper concerns a comparative study on the tribological properties of Si3N4-10 vol% hBN bearing on GCr15 steel under seawater lubrication and dry friction and fresh-water lubrication by using a pin-on-disc tribometer. The results showed that the lower friction coefficient (around 0.03) and wear rate (10−6 mm/Nm) of SN10/GCr15 tribopair were obtained under seawater condition. This might be caused by the comprehensive effects of hydrodynamics and boundary lubrication of surface films formed after the tribo-chemical reaction. Despite SN10/GCr15 tribopair having 0.07 friction coefficient in the pure-water environment, the wear mechanismsits were dominated by the adhesive wear and abrasive wear under the dry friction conditions, and delamination, plowing, and plastic deformation occured on the worn surface. The X-ray photoelectron spectroscopy analysis indicated that the products formed after tribo-chemaical reaction were Fe2O3, SiO2, and B2O3 and small amounts of salts from the seawater, and it was these deposits on the worn surface under seawater lubrication conditions that, served to lubricate and protect the wear surface.


Author(s):  
Marko Sedlacˇek ◽  
Bojan Podgornik ◽  
Jozˇe Vizˇintin

The aim of the present research was to investigate surface topography in terms of different surface roughness parameters and to correlate surface topography change to friction of contact surfaces. For this purpose, different 100Cr6 plate samples with different surface topography were prepared. Using different grades and combinations of grinding and polishing samples with similar Ra values, but different Rku and Rsk values were obtained. To evaluate influence of roughness parameters on friction and wear, dry and lubricated pin-on-disc tests were carried out under different contact conditions. Test results indicate that high Rku and negative Rsk values lead to decrease in friction. To investigate the effect of surface texturing on surface roughness parameters, real roughness profiles were virtually altered to achieve virtually textured surfaces. Using NIST SMATS softgauge for calculation of surface roughness parameters, virtually altered roughness profiles were investigated in terms of texture size, shape and spacing, and their influence on surface roughness parameters, especially on skewness and kurtosis. Lower diameter, higher spacing and wedge-shaped dimples reflect in higher Rku and more negative Rsk parameters.


2017 ◽  
Vol 24 (4) ◽  
pp. 485-494 ◽  
Author(s):  
Iskender Ozsoy ◽  
Adullah Mimaroglu ◽  
Huseyin Unal

AbstractIn this study, the influence of micro- and nanofiller contents on the tribological performance of epoxy composites was studied. The fillers are micro-Al2O3, micro-TiO2, and micro-fly ash and nano-Al2O3, nano-TiO2, and nanoclay fillers. The microfillers were added to the epoxy by 10%, 20%, and 30% by weight. The nanofillers were added to the epoxy by 2.5%, 5%, and 10%. Friction and wear tests were conducted using the pin-on-disc arrangement. Tribo elements consisted of polymer pin and DIN 1.2344 steel counterface disc. A load value of 15 N, a sliding speed of 0.4 m/s, a sliding distance of 2000 m, and dry atmospheric conditions were applied to test conditions. The results show that the friction coefficients and the specific wear rates of the nanofilled composites increase as the filler content increases. For microfiller-filled epoxy composites, these values decrease as filler content increases. The tribological performance of epoxy composites is enhanced by the addition of microfillers, and the higher enhancement is reached with the addition of 30% fly ash filler. Finally, the pin and disc worn surface images show the presence of adhesive and some abrasive wear mechanisms.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Zonggang Mu ◽  
Xiaoxuan Wang ◽  
Shuxiang Zhang ◽  
Yongmin Liang ◽  
Meng Bao ◽  
...  

A series of room temperature ionic liquids bearing with phosphonyl groups on the imidazolium cations, namely, 1-(3′-O,O-diethylphosphonyl-n-propyl)-3-alkylimidazolium tetrafluoroborate, were prepared and their physical properties were determined. They were also evaluated as promising lubricants for the contacts of aluminum on steel by using a SRV test rig. The tribological test results show that the synthetic ionic liquids exhibit better friction-reducing and antiwear abilities than the unsubstituted ionic liquid of 1-ethyl-3-hexylimidazolium tetrafluoroborate (coded as L206) and phosphazene (X-1P). Both the anions and the side substitutes attached to the imidazolium cations affect the tribological performance of lubricants. The scanning electron microscopy, energy-dispersive x-ray analysis, and x-ray photoelectron spectroscopy analyses of the worn surfaces show that complicated tribochemical reactions are involved in the sliding process. The anion decomposition and chemical adsorption of cation took place on the worn surface of aluminum alloy during the sliding process. As a result of the generation of boundary lubrication films which are composed of metal fluorides, B2O3, BN, nitrogen oxide, and FePO4 help to effectively reduce the friction and wear of the contacts.


2021 ◽  
Author(s):  
Yujunwen Li ◽  
Rui Yang ◽  
Wu Lei ◽  
Qingli Hao

Abstract The functionalized graphene/montmorillonite (FG/MTT) nanosheets were synthesized through chemically bonding by a simple, green method, which has remarkable dispersion stability in oil and its lubricating performance was evaluated by a four-ball tribometer. The test results show that FG/MTT has a preeminent lubricant property when the concentration is 0.4 mg/ml. Compared with the bare oil sample, its average friction coefficient (FC) and wear scar diameter (WSD) decrease by 50.4 % and 13.2 %, respectively. The synergistic effect between FG and MTT was further explored by comparing the lubricant mechanism of the different additives. After synthetically analyzing worn surface by means of scanning electron microscopy and X-ray photoelectron spectroscopy, the lubrication mechanism of the FG/MTT nanocomposite as oil additive is discussed and postulated: The FG/MTT with weak interlayer adhesion is filled between the friction pairs to avoid contact and clinging of some asperities, and the sliding between the layers plays a role in lubrication. Furthermore, FG/MTT will react with the surface of the friction pair to form a repair layer composed of Fe2O3, SiC, SiO2, and aluminosilicate, mending the grinding surface and promoting the hardness after friction.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Ch. Sri Chaitanya ◽  
R. Narasimha Rao

Abstract The tribological behavior of the 10%, 20%, 30%, and 40% cenosphere-filled epoxy syntactic foams in terms of the wear rate and the friction coefficient of the foams were reported using a pin on disc tribometer in the present study. The influence of the wear parameters like applied pressure, sliding speed, and the sliding distance on the tribological performance of syntactic foams was reported. Syntactic foams with 40% cenosphere volume fraction exhibit better tribological properties over the other syntactic foams. The worn surface examination shows the adhesive dominant wear mechanism and the wear debris with broken cenosphere particles.


2021 ◽  
pp. 1-13
Author(s):  
Jian Liu ◽  
Xudong Sui ◽  
Zhen Yan ◽  
Guosheng Huang ◽  
Junying Hao

Abstract Cr doped MoS2 films were deposited by magnetron sputtering. The tribological properties of Cr doped MoS2 films under vacuum (VC) and air (AR) environments were investigated. The results show that Cr doped MoS2 film with Cr target power of 0.2 A (0.2 A Cr:MoS2 film) exhibits low friction coefficient and long wear life under both VC and AR environments. The chemical compositions of the films were analyzed by energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). With the increases of Cr target power, the content of Cr increases. The cross-sectional FESEM morphologies show that the structure of the films changed from granular particles to column when the Cr target power increases from 0.2A to 0.4A. The wear mechanism has also been discussed based on the characteristics of worn surface. The 0.4 A Cr:MoS2 film has the lowest wear volume among these films, which can be attributed to the compact microstructure. The bandgap of Cr doped MoS2 films were measured by XPS and the tribological performance of the film is found to be best when there is a modest bandgap. It can be speculated that the tribological performance of Cr doped MoS2 films are closely related to the width of bandgap.


2021 ◽  
Author(s):  
Hong Li ◽  
Jing Zhu ◽  
Yu Zhang ◽  
Zhuoxin Li ◽  
Bo Meng

Abstract In this study, four kinds of nanoparticles: graphite, WS2, Fe3O4 and TiN were used as lubricating additives for steel/copper friction pairs to solve the problem of welding contact tube wear with non-copper-coated solid wire at high temperature. The single and composite nanoparticles have excellent dispersion stability in absolute ethanol under the action of the compound surfactant NaSTA+OA+PVP. The tribological test results showed that the maximum decrement with reference to the average coefficient of friction and wear volumes were measured with nanoparticle concentration in 1:1:1 ratio at 300℃. Compared with dry friction, the average friction coefficient and wear volume are reduced by 74.3% and 84.8%, respectively, which may be attributed to the formation of a stable tribo-film mainly composed of C-O, Fe2O3, WO3, TiO2, TiNxOy composite on the worn surface. Therefore, it is considered that the combined lubrication effects of the ball-bearing effect, repairing of worn surfaces and the tribo-film resulted in the lowest friction and wear.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 487 ◽  
Author(s):  
Ma ◽  
Liu ◽  
Wang ◽  
Wang ◽  
Huang ◽  
...  

This work investigated the effect of honing morphologies of CuNiCr iron liner on its tribological properties sliding against the Cr-Al2O3 coated piston ring. The worn surface morphology and elements distribution as well as the wear behaviors of CuNiCr iron liner were analyzed to explore the influencing of the honing angle and roughness height on the friction and wear resistance. The results show that the optimized honing angle and roughness can improve the tribological performance of the iron liner, and different tribological characteristics are closely related to different roughness parameters. The wear process of the CuNiCr iron liner against Cr-Al2O3 coated piston rings in sequence was platform flattening, plastic flow, growth of the flakes on the platform edge and flakes debonding. For the smooth surface, the plastic deformed flakes were much fewer due to the low height of the platforms, thus the grooves were not fully filled and there was a slight effect of the debonded debris on the friction pair.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 938
Author(s):  
Huaqiang Li ◽  
Wei Chen ◽  
Hongxing Shi ◽  
Chen Zhang ◽  
Xingwei Liu ◽  
...  

The paper presents an in-depth study of the bio-tribological performance on silicon nitride matrix ceramic composites containing hexagonal boron nitride (hBN) with different content. Ultra-high molecular weight polyethylene (UHMWPE) under simulated body fluid lubrication, and the simulated body fluid-lubricated sliding tests were performed on a universal friction and wear tester. The results showed that the incorporation of hBN into silicon nitride matrix reduced the friction coefficients from 0.27 for Si3N4/UHMWPE pair to 0.16 for Si3N4-20%hBN/UHMWPE with full immersion in simulated body fluid lubrication. Scanning electron microscopy (SEM), laser scanning microscope, X-ray photoelectron spectroscopy (XPS) were utilized to characterize the wear surface. The analysis results indicated that, with simulated body fluid lubrication, the interfacial between hBN and Si3N4 facilitated the wear pits to form on the wear surface, and the residual wear particles deposited in the pits. Then, tribochemical products were formed on the wear surface, which protected and smoothed the wear surface of the sliding pair in the simulated body fluid.


Sign in / Sign up

Export Citation Format

Share Document