scholarly journals Fabrication by Spin-Coating and Optical Characterization of Poly(styrene-co-acrylonitrile) Thin Films

Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1015
Author(s):  
Elizabeth Hedl ◽  
Ivana Fabijanić ◽  
Iva Šrut Rakić ◽  
Ivan Vadla ◽  
Jordi Sancho-Parramon

The optical characteristics of poly(styrene-co-acrylonitrile) thin films obtained by spin-coating of polymer blend in tetrahydrofuran were investigated by spectroscopic ellipsometry, spectrophotometry, and atomic force microscopy. Film thickness can be broadly varied by changing the polymer concentration.The film thickness dependence on PSAN concentration shows a non-linear behavior that can be explained by a concentration-dependent viscosity. According to previously proposed models, prepared solutions are close to the concentrated solution regime. Films show a broad transparency range and refractive index independent of film thickness. The refractive index values range from 1.55 to 1.6 in the visible range. Thermal treatment revealed good stability of the films up to 220 °C and a progressive deterioration for larger temperatures, with evident damage at 300 °C. UV-induced photodegradation was observed and results showed a progressive decrease of transmittance in the range between 200 and 300 nm but PSAN thin films show no changes when exposed to light from a solar illuminator. These investigations indicate that PSAN is an excellent candidate for thin film polymer-based optical uses like interference coatings or encapsulation of solar cells.

2000 ◽  
Vol 648 ◽  
Author(s):  
D. Tsamouras ◽  
G. Palasantzas ◽  
J. Th. M. De Hosson ◽  
G. Hadziioannou

AbstractGrowth front scaling aspects are investigated for PPV-type oligomer thin films vapor- deposited onto silicon substrates at room temperature. For film thickness d~15-300 nm, commonly used in optoelectronic devices, correlation function measurement by atomic force microscopy yields roughness exponents in the range H=0.45±0.04, and an rms roughness amplitude which evolves with film thickness as a power law σ∝ dβ with β=0.28±0.05. The non-Gaussian height distribution and the measured scaling exponents (H and β) suggest a roughening mechanism close to that described by the Kardar-Parisi-Zhang scenario.


2004 ◽  
Vol 19 (8) ◽  
pp. 2315-2321 ◽  
Author(s):  
Thang Nguyen ◽  
Walter Varhue ◽  
Edward Adams ◽  
Mark Lavoie ◽  
Stephen Mongeon

The heteroepitaxial growth of GaSb thin films on Si(100) and GaAs(100) substrates is presented. The growth technique involves the use of atomic Ga and Sb species, which are provided by thermal effusion and radio frequency sputtering, respectively. The crystalline quality of the heteroepitaxial GaSb film on the Si substrate is high despite the larger lattice mismatch. Epitaxial quality is determined by high-resolution x-ray diffraction and Rutherford backscatter spectrometry channeling. Atomic-force microscopy is used to monitor the evolution of surface morphology with increasing film thickness. Transmission electron microscopy shows the formation of stacking faults at the Si/GaSb interface and their eventual annihilation with increasing GaSb film thickness. Annihilation of stacking faults occurs when two next-neighbor mounds meet during the overgrowth of a common adjacent mound.


2011 ◽  
Vol 15 (1) ◽  
pp. 49-55
Author(s):  
V. Dhanasekaran ◽  
T. Mahalingam ◽  
S. Rajendran ◽  
Jin Koo Rhee ◽  
D. Eapen

CuO thin films were coated on ITO substrates by an electrodeposition route through potentiostatic mode. The electrodeposited CuO thin films were characterized and the role of copper sulphate concentration on the structural, morphological and optical properties of the CuO films was studied. Film thickness was measured by a stylus profilometer and found to be in the range between 800 and 1400 nm. The structural characteristics studies were carried out using X-ray diffraction and found that the films are polycrystalline in nature with a cubic structure. The preferential orientation of CuO thin films is found to be along (111) plane. The estimated microstructural parameters revealed that the crystallite size increases whereas the number of crystallites per unit area decreases with increasing film thickness. SEM studies show that the grain sizes of CuO thin films vary between 100 and 150 nm and also morphologies revealed that the electrodeposited CuO exhibits uniformity in size and shape. The surface roughness is estimated 15 nm of the CuO film were studied by atomic force microscopy. Optical properties of the films were analyzed from absorption and transmittance studies. The optical band gap energy was determined to be 1.5 eV from absorption coefficient. The variation of refractive index (n), extinction coefficient (k), with wavelength was studied and the results are discussed.


2012 ◽  
Vol 576 ◽  
pp. 417-420 ◽  
Author(s):  
N.N. Hafizah ◽  
Ismail Lyly Nyl ◽  
M.Z. Musa ◽  
Mohamad Rusop Mahmood

In this study, PMMA/TiO2 nanocomposite thin films were prepared by using sonication spin coating technique. The PMMA and TiO2 solution were mixed together and sonicated for 1h to confirm the homogeneity of the sample. The thin films obtained were then measured using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FTIR). FESEM micrograph reveals that the uniformity increases with the increase of TiO2 weight percentage.


1992 ◽  
Vol 280 ◽  
Author(s):  
Bertha P. Chang ◽  
Neville Sonnenberg ◽  
Michael J. Cima

ABSTRACTMgO thin films have been deposited on SrTiO3 and LaA1O3 substrates using both off-axis rf magnetron sputtering and electron beam evaporation techniques. The effects of substrate material, temperature, film thickness, deposition rate, sputtering gas, and pressure on the quality of the MgO films produced have been studied. Films deposited on (100) SrTiO3 at temperatures > 300°C display only the (h00) reflections in their X-ray diffraction traces, with narrow X-ray rocking curve measurements indicating that these films are epitaxial. Epitaxy has been confirmed with grazing incidence diffraction. MgO films deposited on (100) LaAlO3 are crystalline, but have varying orientations depending on the film thickness. From scanning electron microscopy, MgO films on SrTiO3 substrates appear smooth and dense while those deposited on LaAlO3 substrates possess rougher surfaces. Surface morphologies have been analyzed using atomic force microscopy.


1998 ◽  
Vol 10 (2) ◽  
pp. 207-215 ◽  
Author(s):  
M Bruma ◽  
B Schulz ◽  
T Köpnick ◽  
R Dietel ◽  
B Stiller ◽  
...  

Thin films in the range of 50 nm to 10 μm thickness have been prepared from NMP solutions of silicon-containing polyphenylquinoxaline-amides which had been synthesized by the polycondensation reaction of aromatic diaminophenylquinoxalines with bis( p-chlorocarbonylphenyl)diphenylsilane. A spin-coating technique onto glass plates or onto silicon wafers was used to make the films, followed by gradual heating to remove the solvent. The resulting films were very smooth and free of pinholes when studied by atomic force microscopy (AFM). They showed a strong adhesion to silicon wafers, were thermally stable in air to above 400 °C and their dielectric constant was in the range of 3.5–3.7. Thermal treatment of the films was performed in order to induce crosslinking. Such treated films became completely insoluble in organic solvents, maintained their smoothness and strong adhesion to the silicon substrate, and did not show any Tg in DSC experiments. Their FTIR spectra in reflection mode did not show any changes compared with the untreated films, meaning on the one hand that the polymers maintain their structural integrity at high temperature and on the other hand that the number of crosslinks was very low and could not be detected by IR spectroscopy.


1994 ◽  
Vol 359 ◽  
Author(s):  
S. Henke ◽  
K.H. Thürer ◽  
S. Geier ◽  
B. Rauschenbach ◽  
B. Stritzker

ABSTRACTOn mica(001) thin C60-films are deposited by thermal evaporation at substrate temperatures from room temperature up to 225°C. The dependence of the structure and the epitaxial alignment of the thin C60-films on mica(001) on the substrate temperature and the film thickness up to 1.3 μm at a well-defined deposition rate (0.008 nm/s) is investigated by atomic force microscopy and X-ray diffraction. The shape and the size of the C60-islands, which have an influence on the film quality at larger film thicknesses, are sensitively dependent on the substrate temperature. At a film thickness of 200 nm the increase of the substrate temperature up to 225°C leads to smooth, completely coalesced epitaxial C60-thin films characterized by a roughness smaller than 1.5 nm, a mosaic spread Δω of 0.1° and an azimuthal alignment ΔΦ of 0.45°.


1991 ◽  
Vol 248 ◽  
Author(s):  
G. Coulon ◽  
B. Collin ◽  
D. Chatenay ◽  
D. Ausserre

AbstractAtomic Force Microscopy has been used to study the early stage evolution of the free surface of annealed symmetric poly(styrene-b-n-butylmethacrylate) diblock copolymer thin films. As the lamellar ordering propagates through the film thickness, Islands or holes are formed on the free surface. It Is shown that, depending on the Initial film thickness, I.e. on the fraction of the film surface occupied by the islands (or holes) In the ordered state, the existence or non-existence of spatial correlations characterizes the ordering kinetics of both islands and holes. However, the limit between these two regimes is not the same in the two cases : in the case of holes, spatial correlations occur for a higher value of the surface coverage than In the case of islands.


2011 ◽  
Vol 239-242 ◽  
pp. 2244-2247
Author(s):  
Zhi Min Chen ◽  
Yi Qun Wu ◽  
Chun Ying He ◽  
Bin Wang ◽  
Dong Hong Gu ◽  
...  

Smooth thin films of three metal(II) complexes were prepared by spin-coating process from 2,2,3,3- tetrafluoro-1-propanol solution and characterized atomic force microscopy (AFM). In order to examine their possible use as blu-ray recording media, the spin-coated films of the metal(II) complexes on K9 glass substrate with a silver reflective layer were evaluated by static optical recording testing system with a 406.7 nm laser. The morphologies of the thin films are smooth and have a root mean square surface roughness (RMS) of 0.34-0.41 nm with in 5 μ × 5 μ area. The results of the static optical recording test demonstrate that high reflectivity contrast (> 54 %) can be obtained at an optimum laser writing power and pulse width with high-to-low polarity, and the recording marks are durable even after 15000 times readout. In addition, the recording marks on the cobalt (II) complex thin film are very clear and circular, and their size can reach 200 nm or less.


2003 ◽  
Vol 762 ◽  
Author(s):  
William B. Jordan ◽  
Eric D. Carlson ◽  
Todd R. Johnson ◽  
Sigurd Wagner

AbstractThe structure of germanium thin films prepared on glass by plasma enhanced chemical vapor deposition was characterized by Raman spectroscopy, atomic force microscopy (AFM) and field emission scanning electron microscopy (SEM). Crystallinity, surface roughness, and grain size were measured as functions of film thickness and deposition temperature. Grain nucleation was apparent for films as thin as 10 nm. Over the thickness range studied, grain size increased with film thickness, whereas average surface roughness started to increase with film thickness, but then remained fairly constant at approximately 1 nm for a film thickness greater than 25 nm.


Sign in / Sign up

Export Citation Format

Share Document