scholarly journals Discovery of Three Novel Cytospora Species in Thailand and Their Antagonistic Potential

Diversity ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 488
Author(s):  
Jutamart Monkai ◽  
Saowaluck Tibpromma ◽  
Areerat Manowong ◽  
Ausana Mapook ◽  
Chada Norphanphoun ◽  
...  

During an ongoing research survey of saprobic fungi in Thailand, four coelomycetous strains were isolated from decaying leaves in Chiang Mai and Phitsanulok Provinces. Morphological characteristics demonstrated that these taxa are typical of Cytospora in forming multi-loculate, entostromatic conidiomata, branched or unbranched conidiophores, with enteroblastic, phialidic conidiogenous cells and hyaline, allantoid, aseptate conidia. Multiloci phylogeny of ITS, LSU, ACT, RPB2, TEF1-α and TUB2 confirmed these taxa are distinct new species in Cytospora in Cytosporaceae (Diaporthales, Sordariomycetes), viz., Cytospora chiangmaiensis, C. phitsanulokensis and C. shoreae. Cytospora chiangmaiensis has a close phylogenetic relationship with C. shoreae, while C. phitsanulokensis is sister to C. acaciae. These three novel species were also preliminary screened for their antagonistic activity against five plant pathogenic fungi: Colletotrichumfructicola, Co. siamense, Co. artocarpicola, Co. viniferum and Fusarium sambucinum. Cytospora shoreae and C. phitsanulokensis showed >60% inhibition against Co. viniferum and F. sambucinum, while C. chiangmaiensis had moderate inhibition activity against all pathogens.

2002 ◽  
Vol 48 (9) ◽  
pp. 772-786 ◽  
Author(s):  
Annette Krechel ◽  
Annekathrin Faupel ◽  
Johannes Hallmann ◽  
Andreas Ulrich ◽  
Gabriele Berg

To study the effect of microenvironments on potato-associated bacteria, the abundance and diversity of bacteria isolated from the rhizosphere, phyllosphere, endorhiza, and endosphere of field grown potato was analyzed. Culturable bacteria were obtained after plating on R2A medium. The endophytic populations averaged 103and 105CFU/g (fresh wt.) for the endosphere and endorhiza, respectively, which were lower than those for the ectophytic microenvironments, with 105and 107CFU/g (fresh wt.) for the phyllosphere and rhizosphere, respectively. The composition and richness of bacterial species was microenvironment-dependent. The occurrence and diversity of potato-associated bacteria was additionally monitored by a cultivation-independent approach using terminal restriction fragment length polymorphism analysis of 16S rDNA. The patterns obtained revealed a high heterogeneity of community composition and suggested the existence of microenvironment-specific communities. In an approach to measure the antagonistic potential of potato-associated bacteria, a total of 440 bacteria was screened by dual testing for in vitro antagonism towards the soilborne pathogens Verticillium dahliae and Rhizoctonia solani. The proportion of isolates with antagonistic activity was highest for the rhizosphere (10%), followed by the endorhiza (9%), phyllosphere (6%), and endosphere (5%). All 33 fungal antagonists were characterized by testing their in vitro antagonistic mechanisms, including their glucanolytic, chitinolytic, pectinolytic, cellulolytic, and proteolytic activity, and by their BOX-PCR fingerprints. In addition, they were screened for their biocontrol activity against Meloidogyne incognita. Overall, nine isolates belonging to Pseudomonas and Streptomyces species were found to control both fungal pathogens and M. incognita and were therefore considered as promising biological control agents. Key words: biocontrol, antagonistic potential, plant-associated bacteria.


2017 ◽  
Vol 18 (4) ◽  
pp. 1377-1384
Author(s):  
FAJAR RAHMAH NURAINI ◽  
RATNA SETYANINGSIH ◽  
ARI SUSILOWATI

Nuraini FR, Setyaningsih R, Susilowati A. 2017. Screening and characterization of endophytic fungi as antagonistic agents toward Fusarium oxysporum on eggplant (Solanum melongena). Biodiversitas 18: 1377-1384. Fusarium oxysporum is a soil borne pathogenic fungus that causes wilt disease in members of the family Solanaceae including the eggplant (Solanum melongena L.). One approach to resolving the problem of wilt disease in eggplant is to find endophytic microbes with antagonistic activity against F. oxysporum. The study reported here aimed to isolate such endophytic fungal antagonists from growing eggplants, to determine their antagonistic mechanisms, and to identify them. Samples of pathogenic fungi from diseased plants, assumed to be F. oxysporum, were obtained from the Laboratory of Plant Pests and Diseases of the Faculty of Agriculture, Universitas Sebelas Maret Surakarta. These were used to evaluate the antagonistic potential of endophytic fungi obtained from healthy eggplants in Dawung Village, Matesih, Karanganyar, Central Java. Specimens of various plant parts were collected from the healthy eggplants. The surfaces of these samples were sterilized for four minutes to remove contaminants, and then crushed excisions were cultured on a potato dextrose agar (PDA) medium. Antagonistic tests between endophytic and pathogenic fungi used the agar plug diffusion technique. Identification of fungi isolates was carried out on the basis of morphological characteristics. Six endophytic fungi isolated had antagonist activity against F. oxysporum. The antagonistic mechanism of FEB1, FEB2, FEB5 and FED1 was competition; FED2 was antibiosis, and FED3 was parasitism. Based on their morphological characteristics, FEB2, FEB5 and FED3 were identified as Helicomyces spp.; FEB1 was a Rhizopus sp.; FED1 was a Mucor sp.; and FED2 was a species of Penicillium.


2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
Pooja Verma ◽  
Priyanka Chandra ◽  
Kailash Prajapat ◽  
Awtar Singh ◽  
Parul Sundha ◽  
...  

The antagonistic potential of bacteria is being applied to biocontrol the infectious diseases caused by pathogenic fungi in plants that are one of the major threats to the growth and productivity of crop plants. In the present study, bacterial strains were isolated from soil samples collected from the rhizosphere of Sorghum (Sorghum bicolor) and Wheat (Triticum aestivum). Microscopic analysis revealed that all three bacterial isolates were Gram-positive, rod-shaped and spore-forming. The isolates Bacillus subtilis BP171 and Bacillus amyloliquefaciens BP124 demonstrated salt tolerance up to 12% while Bacillus subtilis BP67 tolerated up to 10% of NaCl. All the three strains were screened against seven test pathogenic fungi like Bipolaris sorokiniana, Fusarium oxysporum, Aspergillus sp., Penicillium sp., Rhizoctonia solani, Aspergillus niger, and Fusarium sp. for their antagonistic activity. BP124 was found to be the most potent in comparison to BP67 and BP171. Bacillus amyloliquefaciens BP124 demonstrated significantly highest (p<.0001) inhibition percentage against Fusarium sp., (61%) and Fusarium oxysporum (60%). The optimization of various parameters like pH, temperature, inoculum size, agitation, carbon sources, and nitrogen sources was carried out to enhance the antagonistic potential of bacterial isolates. The results revealed that the bacterial isolates were able to demonstrate significantly highest (p<.0001) antagonistic potential when inoculum size required for the growth was 1ml, agitation rate at 150 rpm, while the medium of pH at 7.0 and 30o C incubation temperature. Starch as carbon source and peptone as nitrogen source supported significantly highest (p<.0001) antagonistic activity against all the fungal pathogens for all the bacterial isolates. Therefore, the study showed that appropriate and optimum fermentation conditions can be of great importance in enhancing the antagonistic potential of bacterial isolates.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
The Anh Luu ◽  
Quyet Tien Phi ◽  
Thi Thu Hang Nguyen ◽  
Mai Van Dinh ◽  
Bich Ngoc Pham ◽  
...  

Abstract Background Fungal stem end rot disease of pitaya caused by Alternaria alternata is one of the most destructive diseases in Binh Thuan province, Vietnam. This study aimed to assess the antagonistic effects of some endophytic bacteria isolated from the weed plant (Echinochloa colonum) against A. alternata. Results A total of 19 endophytic bacteria were isolated and 5 of them presented in vitro antagonistic activity against A. alternata. Of five, strain EC80 significantly inhibited the pathogenic growth with a mean inhibition diameter of 11.88 ± 0.08 mm, while the other four (C79, EC83, EC90, and EC97) showed a weak inhibition. Interestingly, the combination of EC79 and EC80 reduced more biomass of pathogenic fungi than the single one did. EC79 showed positive results for amylase, indole acetic acid (IAA), and biofilm production, whereas EC80 presented positive capabilities for IAA and biofilm production and a negative one for amylase production. In addition, the combined filtrate of EC79 and EC80 presented non-antifungal activity on biocontrol tests in vitro, indicating that bacteria cells played a role in defending against the pathogen. Moreover, both isolates EC79 and EC80 significantly increased seedling biomass than the control. Conclusions The results suggest that those two strains in combination had the potential to be used as a biocontrol agent against A. alternata. More studies should be done in the future to evaluate their efficiency under the field conditions.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Zahaed Evangelista-Martínez ◽  
Erika Anahí Contreras-Leal ◽  
Luis Fernando Corona-Pedraza ◽  
Élida Gastélum-Martínez

Abstract Background Fungi are one of the microorganisms that cause most damage to fruits worldwide, affecting their quality and consumption. Chemical controls with pesticides are used to diminish postharvest losses of fruits. However, biological control with microorganisms or natural compounds is an increasing alternative to protect fruits and vegetables. In this study, the antifungal effect of Streptomyces sp. CACIS-1.5CA on phytopathogenic fungi that cause postharvest tropical fruit rot was investigated. Main body Antagonistic activity was evaluated in vitro by the dual confrontation over fungal isolates obtained from grape, mango, tomato, habanero pepper, papaya, sweet orange, and banana. The results showed that antagonistic activity of the isolate CACIS-1.5CA was similar to the commercial strain Streptomyces lydicus WYEC 108 against the pathogenic fungi Colletotrichum sp., Alternaria sp., Aspergillus sp., Botrytis sp., Rhizoctonia sp., and Rhizopus sp. with percentages ranging from 30 to 63%. The bioactive extract obtained from CACIS-1.5 showed a strong inhibition of fungal spore germination, with percentages ranging from 92 to 100%. Morphological effects as irregular membrane border, deformation, shrinkage, and collapsed conidia were observed on the conidia. Molecularly, the biosynthetic clusters of genes for the polyketide synthase (PKS) type I, PKS type II, and NRPS were detected in the genome of Streptomyces sp. CACIS-1.5CA. Conclusions This study presented a novel Streptomyces strain as a natural alternative to the use of synthetic fungicides or other commercial products having antagonistic microorganisms that were used in the postharvest control of phytopathogenic fungi affecting fruits.


2014 ◽  
Vol 40 (3) ◽  
pp. 212-220 ◽  
Author(s):  
Sinar David Granada García ◽  
Antoni Rueda Lorza ◽  
Carlos Alberto Peláez

Microorganisms for biological control are capable of producing active compounds that inhibit the development of phytopathogens, constituting a promising tool toob tain active principles that could replace synthetic pesticides. This study evaluatedtheability of severalpotentialbiocontrol microorganismsto produce active extracellular metabolites. In vitro antagonistic capability of 50 bacterial isolates from rhizospheric soils of "criolla" potato (Solanum phureja) was tested through dual culture in this plant with different plant pathogenic fungi and bacteria. Isolates that showed significantly higher antagonistic activity were fermented in liquid media and crude extracts from the supernatants had their biological activities assessed by optical density techniques. Inhibitory effecton tested pathogens was observed for concentrations between 0.5% and 1% of crude extracts. There was a correlation between the antimicrobial activity of extracts and the use of nutrient-rich media in bacteria fermentation. Using a bioguided method, a peptidic compound, active against Fusarium oxysporum, was obtained from the 7ANT04 strain (Pyrobaculum sp.). Analysis by nuclear magnetic resonance and liquid chromatography coupled to mass detector evidenced an 11-amino acid compound. Bioinformatic software using raw mass data confirmed the presence of a cyclic peptide conformed by 11 mostly non-standard amino acids.


Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1580-1580
Author(s):  
J. H. Park ◽  
K. S. Han ◽  
J. Y. Kim ◽  
H. D. Shin

Sweet basil, Ocimum basilicum L., is a fragrant herb belonging to the family Lamiaceae. Originated in India 5,000 years ago, sweet basil plays a significant role in diverse cuisines across the world, especially in Asian and Italian cooking. In October 2008, hundreds of plants showing symptoms of leaf spot with nearly 100% incidence were found in polyethylene tunnels at an organic farm in Icheon, Korea. Leaf spots were circular to subcircular, water-soaked, dark brown with grayish center, and reached 10 mm or more in diameter. Diseased leaves defoliated prematurely. The damage purportedly due to this disease has reappeared every year with confirmation of the causal agent made again in 2011. A cercosporoid fungus was consistently associated with disease symptoms. Stromata were brown, consisting of brown cells, and 10 to 40 μm in width. Conidiophores were fasciculate (n = 2 to 10), olivaceous brown, paler upwards, straight to mildly curved, not geniculate in shorter ones or one to two times geniculate in longer ones, 40 to 200 μm long, occasionally reaching up to 350 μm long, 3.5 to 6 μm wide, and two- to six-septate. Conidia were hyaline, acicular to cylindric, straight in shorter ones, flexuous to curved in longer ones, truncate to obconically truncate at the base, three- to 16-septate, and 50 to 300 × 3.5 to 4.5 μm. Morphological characteristics of the fungus were consistent with the previous reports of Cercospora guatemalensis A.S. Mull. & Chupp (1,3). Voucher specimens were housed at Korea University herbarium (KUS). An isolate from KUS-F23757 was deposited in the Korean Agricultural Culture Collection (Accession No. KACC43980). Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The resulting sequence of 548 bp was deposited in GenBank (Accession No. JQ995781). This showed >99% similarity with sequences of many Cercospora species, indicating their close phylogenetic relationship. Isolate of KACC43980 was used in the pathogenicity tests. Hyphal suspensions were prepared by grinding 3-week-old colonies grown on PDA with distilled water using a mortar and pestle. Five plants were inoculated with hyphal suspensions and five plants were sprayed with sterile distilled water. The plants were covered with plastic bags to maintain a relative humidity of 100% for 24 h and then transferred to a 25 ± 2°C greenhouse with a 12-h photoperiod. Typical symptoms of necrotic spots appeared on the inoculated leaves 6 days after inoculation, and were identical to the ones observed in the field. C. guatemalensis was reisolated from symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in Malawi, India, China, and Japan (2,3), but not in Korea. To our knowledge, this is the first report of C. guatemalensis on sweet basil in Korea. Since farming of sweet basil has recently started on a commercial scale in Korea, the disease poses a serious threat to safe production of this herb, especially in organic farming. References: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Ithaca, NY, 1953. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology & Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , May 5, 2012. (3) J. Nishikawa et al. J. Gen. Plant Pathol. 68:46, 2002.


2017 ◽  
Vol 63 (5) ◽  
pp. 411-426 ◽  
Author(s):  
Rowida Mohamed ◽  
Emma Groulx ◽  
Stefanie Defilippi ◽  
Tamara Erak ◽  
James T. Tambong ◽  
...  

Disease suppressive composts have the potential to mitigate the risks associated with chemical pesticides. One of the main characteristics responsible for the suppressive nature of composts is their microbiological populations. To gain insight into the determinants responsible for their suppressive effects, we assayed composts to (i) isolate and identify beneficial antagonistic bacteria, (ii) quantify their antifungal and anti-oomycetal activities, (iii) extract inhibitory compounds produced by the bacteria, and (iv) identify antimicrobial lipopeptides produced by these bacteria. The antagonistic bacteria belonged to the genera Arthrobacter, Pseudomonas, Bacillus, Brevibacillus, Paenibacillus, and Rummeliibacillus and had the ability to antagonise the growth of Fusarium sambucinum, Verticillium dahliae, and (or) Pythium sulcatum. These bacteria produced antimicrobial compounds that affected the mycelial growth and (or) conidial germination of the pathogens. Mass spectrometry analyses showed the presence of various antimicrobial lipopeptides in Bacillus and Bacillus-related spp. extracts, demonstrating that they are responsible, at least in part, for the antagonistic activity of the bacteria. Results from this work provide greater insight into some of the biological, biochemical, and physiological determinants of suppressiveness in composts involved in the control of plant pathogens.


2011 ◽  
Vol 80 (1) ◽  
pp. 429-440 ◽  
Author(s):  
Xianping Li ◽  
Meihua Gao ◽  
Xuelin Han ◽  
Sha Tao ◽  
Dongyu Zheng ◽  
...  

ABSTRACTAspergillus fumigatusis the most prevalent airborne fungal pathogen that induces serious infections in immunocompromised patients. Phospholipases are key enzymes in pathogenic fungi that cleave host phospholipids, resulting in membrane destabilization and host cell penetration. However, knowledge of the impact of phospholipases onA. fumigatusvirulence is rather limited. In this study, disruption of thepldgene encoding phospholipase D (PLD), an important member of the phospholipase protein family inA. fumigatus, was confirmed to significantly decrease both intracellular and extracellular PLD activity ofA. fumigatus. Thepldgene disruption did not alter conidial morphological characteristics, germination, growth, and biofilm formation but significantly suppressed the internalization ofA. fumigatusinto A549 epithelial cells without affecting conidial adhesion to epithelial cells. Importantly, the suppressed internalization was fully rescued in the presence of 100 μM phosphatidic acid, the PLD product. Indeed, complementation ofpldrestored the PLD activity and internalization capacity ofA. fumigatus. Phagocytosis ofA. fumigatusconidia by J774 macrophages was not affected by the absence of thepldgene. Pretreatment of conidia with 1-butanol and a specific PLD inhibitor decreased the internalization ofA. fumigatusinto A549 epithelial cells but had no effect on phagocytosis by J774 macrophages. Finally, loss of thepldgene attenuated the virulence ofA. fumigatusin mice immunosuppressed with hydrocortisone acetate but not with cyclophosphamide. These data suggest that PLD ofA. fumigatusregulates its internalization into lung epithelial cells and may represent an important virulence factor forA. fumigatusinfection.


2002 ◽  
Vol 68 (7) ◽  
pp. 3328-3338 ◽  
Author(s):  
Gabriele Berg ◽  
Nicolle Roskot ◽  
Anette Steidle ◽  
Leo Eberl ◽  
Angela Zock ◽  
...  

ABSTRACT To study the effect of plant species on the abundance and diversity of bacterial antagonists, the abundance, the phenotypic diversity, and the genotypic diversity of rhizobacteria isolated from potato, oilseed rape, and strawberry and from bulk soil which showed antagonistic activity towards the soilborne pathogen Verticillium dahliae Kleb. were analyzed. Rhizosphere and soil samples were taken five times over two growing seasons in 1998 and 1999 from a randomized field trial. Bacterial isolates were obtained after plating on R2A (Difco, Detroit, Mich.) or enrichment in microtiter plates containing high-molecular-weight substrates followed by plating on R2A. A total of 5,854 bacteria isolated from the rhizosphere of strawberry, potato, or oilseed rape or bulk soil from fallow were screened by dual testing for in vitro antagonism towards Verticillium. The proportion of isolates with antagonistic activity was highest for strawberry rhizosphere (9.5%), followed by oilseed rape (6.3%), potato (3.7%), and soil (3.3%). The 331 Verticillium antagonists were identified by their fatty acid methyl ester profiles. They were characterized by testing their in vitro antagonism against other pathogenic fungi; their glucanolytic, chitinolytic, and proteolytic activities; and their BOX-PCR fingerprints. The abundance and composition of Verticillium antagonists was plant species dependent. A rather high proportion of antagonists from the strawberry rhizosphere was identified as Pseudomonas putida B (69%), while antagonists belonging to the Enterobacteriaceae (Serratia spp., Pantoea agglomerans) were mainly isolated from the rhizosphere of oilseed rape. For P. putida A and B plant-specific genotypes were observed, suggesting that these bacteria were specifically enriched in each rhizosphere.


Sign in / Sign up

Export Citation Format

Share Document