scholarly journals Techno-Economic Assessment of Three Modes of Large-Scale Crop Residue Utilization Projects in China

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3729 ◽  
Author(s):  
Liang Meng ◽  
Ahmed Alengebawy ◽  
Ping Ai ◽  
Keda Jin ◽  
Mengdi Chen ◽  
...  

In China, the non-exploitation of bioenergy poses major problems and challenges. To solve bioenergy problems, considerable efforts have been made to expedite the construction of large-scale crop residue utilization projects. In this study, three principal supported modes of large-scale crop residue utilization projects were taken as empirical cases in Hubei province bioenergy planning. In terms of the overall benefit and sustainable development, a third-grade evaluation index system was established. The analysis was carried out using the analytical hierarchy process, principal component projection, and grey relational analysis. The conclusion indicates that according to the evaluation values, the sequence from best to worst was crop residue biogas project, crop residue briquette fuel project, and crop residue gasification project. Nevertheless, there was no remarkable difference in the overall evaluation values. The biogas project had certain advantages in terms of the production cost, soil improvement, and expenditure saving, whereas the gasification project was comparatively insufficient in environmental efficiency, product benefit, by-product disposal, and technical rationality. According to actual evaluation results, the unilateral determination approach of the single weight index can be seen as being overcome through the unified adaptation of the evaluation methods. The research results can serve as a reference for making investment decisions to build large-scale crop residue utilization projects.

2020 ◽  
pp. 165-171
Author(s):  
Iryna Hryhoruk

Exhaustion of traditional energy resources, their uneven geographical location, and catastrophic changes in the environment necessitate the transition to renewable energy resources. Moreover, Ukraine's economy is critically dependent on energy exports, and in some cases, the dependence is not only economic but also political, which in itself poses a threat to national security. One of the ways to solve this problem is the large-scale introduction and use of renewable energy resources, bioenergy in particular. The article summarizes and offers methods for assessing the energy potential of agriculture. In our country, a significant amount of biomass is produced every year, which remains unused. A significant part is disposed of due to incineration, which significantly harms the environment and does not allow earning additional funds. It is investigated that the bioenergy potential of agriculture depends on the geographical distribution and varies in each region of Ukraine. Studies have shown that as of 2019 the smallest share in the total amount of conventional fuel that can be obtained from agricultural waste and products suitable for energy production accounts for Zakarpattya region - 172.5 thousand tons. (0.5% of the total) and Chernivtsi region - 291.3 thousand tons. (0.9%). Poltava region has the greatest potential - 2652.2 thousand tons. (7.8%) and Vinnytsia - 2623.7 thousand tons. (7.7%). It should be noted that the use of the energy potential of biomass in Ukraine can be called unsatisfactory. The share of biomass in the provision of primary energy consumption is very small. For bioenergy to occupy its niche in the general structure of the agro-industrial complex, it is necessary to develop mechanisms for its stimulation. In addition, an effective strategy for the development of the bioenergy sector of agriculture is needed. The article considers the general energy potential of agriculture, its indicative structure. The analysis is also made in terms of areas. In addition, an economic assessment of the possible use of existing potential is identified.


Author(s):  
Pooja Prabhu ◽  
A. K. Karunakar ◽  
Sanjib Sinha ◽  
N. Mariyappa ◽  
G. K. Bhargava ◽  
...  

AbstractIn a general scenario, the brain images acquired from magnetic resonance imaging (MRI) may experience tilt, distorting brain MR images. The tilt experienced by the brain MR images may result in misalignment during image registration for medical applications. Manually correcting (or estimating) the tilt on a large scale is time-consuming, expensive, and needs brain anatomy expertise. Thus, there is a need for an automatic way of performing tilt correction in three orthogonal directions (X, Y, Z). The proposed work aims to correct the tilt automatically by measuring the pitch angle, yaw angle, and roll angle in X-axis, Z-axis, and Y-axis, respectively. For correction of the tilt around the Z-axis (pointing to the superior direction), image processing techniques, principal component analysis, and similarity measures are used. Also, for correction of the tilt around the X-axis (pointing to the right direction), morphological operations, and tilt correction around the Y-axis (pointing to the anterior direction), orthogonal regression is used. The proposed approach was applied to adjust the tilt observed in the T1- and T2-weighted MR images. The simulation study with the proposed algorithm yielded an error of 0.40 ± 0.09°, and it outperformed the other existing studies. The tilt angle (in degrees) obtained is ranged from 6.2 ± 3.94, 2.35 ± 2.61, and 5 ± 4.36 in X-, Z-, and Y-directions, respectively, by using the proposed algorithm. The proposed work corrects the tilt more accurately and robustly when compared with existing studies.


2021 ◽  
Vol 503 (1) ◽  
pp. 270-291
Author(s):  
F Navarete ◽  
A Damineli ◽  
J E Steiner ◽  
R D Blum

ABSTRACT W33A is a well-known example of a high-mass young stellar object showing evidence of a circumstellar disc. We revisited the K-band NIFS/Gemini North observations of the W33A protostar using principal components analysis tomography and additional post-processing routines. Our results indicate the presence of a compact rotating disc based on the kinematics of the CO absorption features. The position–velocity diagram shows that the disc exhibits a rotation curve with velocities that rapidly decrease for radii larger than 0.1 arcsec (∼250 au) from the central source, suggesting a structure about four times more compact than previously reported. We derived a dynamical mass of 10.0$^{+4.1}_{-2.2}$ $\rm {M}_\odot$ for the ‘disc + protostar’ system, about ∼33 per cent smaller than previously reported, but still compatible with high-mass protostar status. A relatively compact H2 wind was identified at the base of the large-scale outflow of W33A, with a mean visual extinction of ∼63 mag. By taking advantage of supplementary near-infrared maps, we identified at least two other point-like objects driving extended structures in the vicinity of W33A, suggesting that multiple active protostars are located within the cloud. The closest object (Source B) was also identified in the NIFS field of view as a faint point-like object at a projected distance of ∼7000 au from W33A, powering extended K-band continuum emission detected in the same field. Another source (Source C) is driving a bipolar $\rm {H}_2$ jet aligned perpendicular to the rotation axis of W33A.


2021 ◽  
Vol 13 (10) ◽  
pp. 5359
Author(s):  
Afrika Onguko Okello ◽  
Jonathan Makau Nzuma ◽  
David Jakinda Otieno ◽  
Michael Kidoido ◽  
Chrysantus Mbi Tanga

The utilization of insect-based feeds (IBF) as an alternative protein source is increasingly gaining momentum worldwide owing to recent concerns over the impact of food systems on the environment. However, its large-scale adoption will depend on farmers’ acceptance of its key qualities. This study evaluates farmer’s perceptions of commercial IBF products and assesses the factors that would influence its adoption. It employs principal component analysis (PCA) to develop perception indices that are subsequently used in multiple regression analysis of survey data collected from a sample of 310 farmers. Over 90% of the farmers were ready and willing to use IBF. The PCA identified feed performance, social acceptability of the use of insects in feed formulation, feed versatility and marketability of livestock products reared on IBF as the key attributes that would inform farmers’ purchase decisions. Awareness of IBF attributes, group membership, off-farm income, wealth status and education significantly influenced farmers’ perceptions of IBF. Interventions such as experimental demonstrations that increase farmers’ technical knowledge on the productivity of livestock fed on IBF are crucial to reducing farmers’ uncertainties towards acceptability of IBF. Public partnerships with resource-endowed farmers and farmer groups are recommended to improve knowledge sharing on IBF.


2011 ◽  
Vol 24 (13) ◽  
pp. 3457-3468 ◽  
Author(s):  
Keyan Fang ◽  
Xiaohua Gou ◽  
Fahu Chen ◽  
Edward Cook ◽  
Jinbao Li ◽  
...  

Abstract A preliminary study of a point-by-point spatial precipitation reconstruction for northwestern (NW) China is explored, based on a tree-ring network of 132 chronologies. Precipitation variations during the past ~200–400 yr (the common reconstruction period is from 1802 to 1990) are reconstructed for 26 stations in NW China from a nationwide 160-station dataset. The authors introduce a “search spatial correlation contour” method to locate candidate tree-ring predictors for the reconstruction data of a given climate station. Calibration and verification results indicate that most precipitation reconstruction models are acceptable, except for a few reconstructions (stations Hetian, Hami, Jiuquan, and Wuwei) with degraded quality. Additionally, the authors compare four spatial precipitation factors in the instrumental records and reconstructions derived from a rotated principal component analysis (RPCA). The northern and southern Xinjiang factors from the instrumental and reconstructed data agree well with each other. However, differences in spatial patterns between the instrumentation and reconstruction data are also found for the other two factors, which probably result from the relatively poor quality of a few stations. Major drought events documented in previous studies—for example, from the 1920s through the 1930s for the eastern part of NW China—are reconstructed in this study.


Author(s):  
Davide Arella ◽  
Maddalena Dilucca ◽  
Andrea Giansanti

AbstractIn each genome, synonymous codons are used with different frequencies; this general phenomenon is known as codon usage bias. It has been previously recognised that codon usage bias could affect the cellular fitness and might be associated with the ecology of microbial organisms. In this exploratory study, we investigated the relationship between codon usage bias, lifestyles (thermophiles vs. mesophiles; pathogenic vs. non-pathogenic; halophilic vs. non-halophilic; aerobic vs. anaerobic and facultative) and habitats (aquatic, terrestrial, host-associated, specialised, multiple) of 615 microbial organisms (544 bacteria and 71 archaea). Principal component analysis revealed that species with given phenotypic traits and living in similar environmental conditions have similar codon preferences, as represented by the relative synonymous codon usage (RSCU) index, and similar spectra of tRNA availability, as gauged by the tRNA gene copy number (tGCN). Moreover, by measuring the average tRNA adaptation index (tAI) for each genome, an index that can be associated with translational efficiency, we observed that organisms able to live in multiple habitats, including facultative organisms, mesophiles and pathogenic bacteria, are characterised by a reduced translational efficiency, consistently with their need to adapt to different environments. Our results show that synonymous codon choices might be under strong translational selection, which modulates the choice of the codons to differently match tRNA availability, depending on the organism’s lifestyle needs. To our knowledge, this is the first large-scale study that examines the role of codon bias and translational efficiency in the adaptation of microbial organisms to the environment in which they live.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4436
Author(s):  
Mohammad Al Ktash ◽  
Mona Stefanakis ◽  
Barbara Boldrini ◽  
Edwin Ostertag ◽  
Marc Brecht

A laboratory prototype for hyperspectral imaging in ultra-violet (UV) region from 225 to 400 nm was developed and used to rapidly characterize active pharmaceutical ingredients (API) in tablets. The APIs are ibuprofen (IBU), acetylsalicylic acid (ASA) and paracetamol (PAR). Two sample sets were used for a comparison purpose. Sample set one comprises tablets of 100% API and sample set two consists of commercially available painkiller tablets. Reference measurements were performed on the pure APIs in liquid solutions (transmission) and in solid phase (reflection) using a commercial UV spectrometer. The spectroscopic part of the prototype is based on a pushbroom imager that contains a spectrograph and charge-coupled device (CCD) camera. The tablets were scanned on a conveyor belt that is positioned inside a tunnel made of polytetrafluoroethylene (PTFE) in order to increase the homogeneity of illumination at the sample position. Principal component analysis (PCA) was used to differentiate the hyperspectral data of the drug samples. The first two PCs are sufficient to completely separate all samples. The rugged design of the prototype opens new possibilities for further development of this technique towards real large-scale application.


2016 ◽  
Vol 11 (2) ◽  
pp. 487-494
Author(s):  
Li Bo

As water abundance of aquifer of coal roof significantly influences roof water hazard, evaluating and grading the degree of water abundance are important in practical application. By analyzing the influencing factors of water abundance of aquifer, an evaluation index system and a grading standard for the water abundance were established integrating quantitative and qualitative indexes. Meanwhile, according to the grey relation characteristics of the major factors influencing water abundance, a multi-factor evaluation model for water abundance was constructed based on grey relational analysis and analytic hierarchy process. The model can objectively reveal the influences of the multiple factors on the evaluation of water abundance. Furthermore, the method was verified by comprehensively evaluating the water abundance of the aquifer of coal roof in a working face of Pingshuo Coal Mine in Shanxi, China using the model. The method provides basis for the research on the evaluation of water abundance of aquifer in coal roof.


2014 ◽  
Vol 27 (4) ◽  
pp. 1395-1412 ◽  
Author(s):  
Alexandre O. Fierro ◽  
Lance M. Leslie

Abstract Over the past century, particularly after the 1960s, observations of mean maximum temperatures reveal an increasing trend over the southeastern quadrant of the Australian continent. Correlation analysis of seasonally averaged mean maximum temperature anomaly data for the period 1958–2012 is carried out for a representative group of 10 stations in southeast Australia (SEAUS). For the warm season (November–April) there is a positive relationship with the El Niño–Southern Oscillation (ENSO) and the Pacific decadal oscillation (PDO) and an inverse relationship with the Antarctic Oscillation (AAO) for most stations. For the cool season (May–October), most stations exhibit similar relationships with the AAO, positive correlations with the dipole mode index (DMI), and marginal inverse relationships with the Southern Oscillation index (SOI) and the PDO. However, for both seasons, the blocking index (BI, as defined by M. Pook and T. Gibson) in the Tasman Sea (160°E) clearly is the dominant climate mode affecting maximum temperature variability in SEAUS with negative correlations in the range from r = −0.30 to −0.65. These strong negative correlations arise from the usual definition of BI, which is positive when blocking high pressure systems occur over the Tasman Sea (near 45°S, 160°E), favoring the advection of modified cooler, higher-latitude maritime air over SEAUS. A point-by-point correlation with global sea surface temperatures (SSTs), principal component analysis, and wavelet power spectra support the relationships with ENSO and DMI. Notably, the analysis reveals that the maximum temperature variability of one group of stations is explained primarily by local factors (warmer near-coastal SSTs), rather than teleconnections with large-scale drivers.


Sign in / Sign up

Export Citation Format

Share Document