scholarly journals Techno-Cost-Benefit Analysis of Biogas Production from Industrial Cassava Starch Wastewater in Thailand for Optimal Utilization with Energy Storage

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 416
Author(s):  
Chatree Wattanasilp ◽  
Roongrojana Songprakorp ◽  
Annop Nopharatana ◽  
Charoenchai Khompatraporn

This paper applied the optimization model of the biogas utilization pathway with the biogas utilization availability assessment to examine the effect of biogas system parameters on biogas utilization. The model analyzes the biogas utilization pathway availability and maximum profit to value added and productivity in biogas from industry wastewater in Thailand. The results showed that profit and availability of biogas utilization reduce biogas loss to flare, that it entails several conversion processes. The scenario for the biogas utilization pathway and storage with biogas production technology improves. Evaluated are operation time, waste and energy demand to the cassava starch usage during the production for 50–1000 tons per day. Five mature biogas production technologies were benchmarked evaluated based on the chemical oxygen demand removal efficiency and biogas yields. Subsequently, low-, medium-, and high-pressure storages and a battery storage were considered and discussed in this paper as suitable energy storage for each desired biogas plant operation. Five biogas utilization pathways, including converting biogas into thermal energy, generating electricity, and upgrading biogas to compressed biogas, were then compared. Those improved options in the scenario select suitable biogas technologies, storage, and application for value-added, reduce the environmental problems and renewable energy production from wastewater.

2020 ◽  
Vol 12 (12) ◽  
pp. 5222 ◽  
Author(s):  
A. Sinan Akturk ◽  
Goksel N. Demirer

The positive effects of conductive material supplementation on anaerobic digestion have been mainly investigated for single synthetic substrates, while its significance for real and complex organic wastes such as food waste has not been sufficiently investigated. This study investigated the effect of conductive material (biochar and magnetite) and trace metal supplementation on the anaerobic digestion of food waste by means of biochemical methane potential assays. The results indicated that the supplementation of biochar and trace metals improved both total biogas production and methane yields. A biochar dose of 2.0 and 5.0 g/L resulted in 11.2 ± 6.5 and 27.3 ± 9.5% increase in biogas and 8.3 ± 6.8 and 33.2 ± 2.8% increase in methane yield, respectively. Moreover, the same reactors demonstrated high food waste stabilization performance of over 80% chemical oxygen demand removal efficiency. These results indicate that biochar supplementation leads to more enhanced anaerobic digestion operation that could be through increased surface area for microbial growth and/or direct interspecies electron transfer mechanism. In turn, food waste will not only be stabilized but also valorized by anaerobic digestion at higher efficiencies that support sustainable waste management through both environmentally safe disposal and value-added generation.


2016 ◽  
Vol 37 (4) ◽  
pp. 1827 ◽  
Author(s):  
Paulo André Cremonez ◽  
Armin Feiden ◽  
Joel Gustavo Teleken ◽  
Samuel Nelson Melegari de Souza ◽  
Michael Feroldi ◽  
...  

In this study, we compared cassava starch-based biodegradable polymers (PBMs) and glycerol (G) as additives used to increase biogas production from the co-digestion of swine wastewater (ARS). We chose to work with an inoculum comprising 40% (v/v) of the total volume of the reactor; this inoculum was obtained from a Canadian model digester for treating swine waste. In the anaerobic digestion process, batch reactors were used on a laboratory scale with a total volume of approximately 4 L and a working volume of 3.2 L. Three treatments were conducted to compare the efficiency of solid removal, the chemical oxygen demand (COD), and the production of biogas. The first treatment contained only swine waste; the second included the addition of glycerol at 1, 3, and 5% (w/v); and the third treatment included the addition of 1, 3, and 5% (w/v) of PBM residue in relation to the swine wastewater. From the results, it can be concluded that higher yields were obtained for the treatment with 3% PBM and 1% glycerol. Most treatments showed high removal rates of total solids and total volatile solids. Reductions lower than 70% were obtained only for treatments with PBM and glycerol at a ratio of 5%.


2020 ◽  
Vol 10 (8) ◽  
pp. 2975
Author(s):  
Jens Lansche ◽  
Sebastian Awiszus ◽  
Sajid Latif ◽  
Joachim Müller

The cultivation of cassava (Manihot esculenta) is widely spread in a variety of tropical countries with an estimated annual production of 291.9 million tons. The crop is the most important source of carbohydrates in producing countries. In Malaysia, cassava is mainly cultivated for starch production. Despite the economic and nutritional importance of cassava, there is only limited knowledge available regarding the overall environmental impacts of cassava starch production or the production of alternative food products like cassava crisps. This study presents an environmental assessment of different scenarios of cassava production and processing by a life cycle assessment (LCA) approach. The results indicate that the environmental impacts of cassava-based products can be reduced considerably with the utilization of processing residues for anaerobic digestion if the resulting biogas is used for the production of electricity and heat. In the industrial scenario, the results indicate that the highest relative reductions are achieved for cumulated energy demand (CED), global warming potential (GWP) and deforestation (DEF) with −39%, −26% and −18%, respectively, while in the advanced scenario, environmental impacts for CED, GWP, ozone formation potential (OFP) and water stress index (WSI) can be reduced by more than 10% with −281%, −37%, −16% and −14%, respectively. The impacts for global warming potential found in this study are slightly higher compared to other studies that focused on the carbon footprint of starch production from cassava, while the savings due to biogas production are similar.


2013 ◽  
Vol 68 (4) ◽  
pp. 870-878 ◽  
Author(s):  
Riccardo Gori ◽  
Francesca Giaccherini ◽  
Lu-Man Jiang ◽  
Reza Sobhani ◽  
Diego Rosso

The goal of this paper is to show the effect of primary sedimentation on the chemical oxygen demand (COD) and solids fractionation and consequently on the carbonaceous and energy footprints of wastewater treatment processes. Using a simple rational procedure for COD and solids fraction quantification, we quantify the effects of varying fractions on CO2 and CO2-equivalent mass flows, process energy demand and energy recovery. Then we analysed two treatment plants with similar biological nutrient removal processes in two different climatic regions and quantified the net benefit of gravity separation before biological treatment. In the cases analysed, primary settling increases the solid fraction of COD that is processed in anaerobic digestion, with an associated increase in biogas production and energy recovery, and a reduction in overall emissions of CO2 and CO2-equivalent from power importation.


2020 ◽  
Vol 7 (3) ◽  
pp. 80 ◽  
Author(s):  
Prativa Mahato ◽  
Bernard Goyette ◽  
Md. Saifur Rahaman ◽  
Rajinikanth Rajagopal

Globally, livestock and poultry production leads to total emissions of 7.1 Gigatonnes of CO2-equiv per year, representing 14.5% of all anthropogenic greenhouse gas emissions. Anaerobic digestion (AD) is one of the sustainable approaches to generate methane (CH4) from manure, but the risk of ammonia inhibition in high-solids AD can limit the process. Our objective was to develop a two-stage (liquid–solid) AD biotechnology, treating chicken (CM) + dairy cow (DM) manure mixtures at 20 °C using adapted liquid inoculum that could make livestock farming more sustainable. The effect of organic loading rates (OLR), cycle length, and the mode of operation (particularly liquid inoculum recirculation-percolation mode) was evaluated in a two-stage closed-loop system. After the inoculum adaptation phase, aforementioned two-stage batch-mode AD operation was conducted for the co-digestion of CM + DM (Total Solids (TS): 48–51% and Total Kjeldahl Nitrogen (TKN): 13.5 g/L) at an OLR of 3.7–4.7 gVS/L.d. Two cycles of different cycle lengths (112-d and 78-d for cycles 1 and 2, respectively) were operated with a CM:DM mix ratio of 1:1 (w/w) based on a fresh weight basis. Specific methane yield (SMY) of 0.35 ± 0.11 L CH4g/VSfed was obtained with a CH4 concentration of above 60% for both the cycles and Soluble Chemical Oxygen Demand (CODs) and volatile solid (VS) reductions up to 85% and 60%, respectively. For a comparison purpose, a similar batch-mode operation was conducted for mono-digestion of CM (TS: 65–73% and TKN: 21–23 g/L), which resulted in a SMY of 0.52 ± 0.13 L CH4g/VSfed. In terms of efficiency towards methane-rich biogas production and ammonia inhibitions, CM + DM co-digestion showed comparatively better quality methane and generated lower free ammonia than CM mono-digestion. Further study is underway to optimize the operating parameters for the co-digestion process and to overcome inhibitions and high energy demand, especially for cold countries.


2020 ◽  
Vol 15 (3) ◽  
pp. 683-696
Author(s):  
Vaileth Hance ◽  
Thomas Kivevele ◽  
Karoli Nicholas Njau

Abstract The energy demand, which is expected to increase more worldwide, has sparked the interest of researchers to find sustainable and inexpensive sources of energy. This study aims to integrate an energy recovering step into municipal wastewater treatment plants (MWWTPS) through anaerobic digestion. The anaerobic digestion of municipal wastewater (MWW), and then co-digestion with sugar cane molasses (SCM) to improve its organic content, was conducted at 25 °C and 37 °C. The results showed a substrate mixture containing 6% of SCM and total solids (TS) of 7.52% yielded a higher amount of biogas (9.73 L/L of modified substrate). However, chemical oxygen demand (COD) of the resulting digestate was high (10.1 g/L) and pH was not stable, and hence needed careful adjustment using 2 M of NaOH solution. This study recommends a substrate mixture containing SCM (2%) and TS (4.34%) having biogas production (4.97 L/L of modified substrate) for energy recovery from MWWTPS, since it was found to have more stable pH and low COD residue (1.8 g/L), which will not hold back the MWW treatment process. The annual generation of modified substrate (662,973 m3) is anticipated to generate about 16,241 m3 of methane, which produces up to 1.8 GWh and 8,193 GJ per annum.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal

This study presents the bio-photocatalytic upgrading of biogas utilising carbon dioxide (CO2) as a potential option for beginning fossil fuel depletion and the associated environmental risks in the pursuit of sustainable development. Herein, magnetite photocatalyst (Fe-TiO2) was employed with an integrated anaerobic-photomagnetic system for the decontamination of municipality wastewater for biogas production. The Fe-TiO2 photocatalyst used, manufactured via a co-precipitation technique, had a specific surface area of 62.73 m2/g, micropore volume of 0.017 cm3/g and pore size of 1.337 nm. The results showed that using the ultraviolet-visible (UV-Vis) photomagnetic system as a post-treatment to the anaerobic digestion (AD) process was very effective with over 85% reduction in colour, chemical oxygen demand (COD) and turbidity. With an organic loading rate (OLR) of 0.394 kg COD/L·d and hydraulic retention time (HTR) of 21 days, a 92% degradation of the organic content (1.64 kgCOD/L) was attained. This maximised the bioenergy production to 5.52 kWh/m3 with over 10% excess energy to offset the energy demand of the UV-Vis lamp. Assuming 33% of the bioenergy produced was used as electricity to power the UV-Vis lamp, the CO2 emission reduction was 1.74 kg CO2 e/m3, with good potential for environmental conservation.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


2019 ◽  
Vol 38 (1) ◽  
pp. 69-77
Author(s):  
Noppawan Photong ◽  
Jaruwan Wongthanate

This research is focused on the feasibility of biofuel from water hyacinth mixed with cassava starch sediment by biological and physical conversion processes and the comparison of the gross electricity production in these processes. The biological conversion process produced biomethane by anaerobic digestion. The optimal conditions of biomethane production were a ratio of water hyacinth and cassava starch sediment at 25:75, initial pH of 7.5, thermophilic temperature (55 ± 2°C) and C/N ratio of 30. The maximum biomethane yield measured was 436.82 mL CH4 g chemical oxygen demand (COD)−1 and the maximum COD removal was 87.40%. The physical conversion process was bio-briquette. It was found that the ratios of water hyacinth and cassava starch sediment at 10:90, 20:80, 30:70, 40:60 and 50:50 were the best ratio of fuel properties and close to the Thai Community Product Standard, with heating values of 15.66, 15.43, 15.10, 14.88 and 14.58 MJ kg−1, respectively. Moreover, results showed that the gross electricity production of the biological conversion process (biomethane) was 3.90 kWh and the gross electricity production of the physical conversion process (bio-briquette) from the ratios of water hyacinth and cassava starch sediment at 10:90, 20:80, 30:70, 40:60 and 50:50 were 1.52, 1.50, 1.47, 1.45 and 1.42 kWh, respectively.


Sign in / Sign up

Export Citation Format

Share Document