scholarly journals Leaching of Chlorides, Sulphates, and Phosphates from Ashes Formed as a Result of Burning Conventional Fuels, Alternative Fuels, and Municipal Waste in Household Furnaces

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3936
Author(s):  
Alicja Kicińska ◽  
Grzegorz Caba

The aim of the study was to assess leaching of Cl−, SO42−, and PO43− from ashes formed in household furnaces. The ashes were obtained following the combustion of conventional fuels, namely wood and hard coal, and alternative fuels with various fractions of municipal waste in a household boiler. Aqueous leachates of the ashes were used to determine concentrations of chlorides by titration (Mohr’s method) (21.3–3049.6 mg/dm3), sulphates by the gravimetric method (12.2–244.1 mg/dm3), and phosphates by spectrophotometry (0.01–67.2 mg/dm3). It was found that co-combustion of municipal waste with plastic-coated paper cartons, diapers, or a mixed waste fraction leaves the greatest amount of ashes on the furnace grate. The highest amounts of Cl−, SO42−, and PO43− were leached from ashes generated from burning a mix of wood and coals, or wood alone (different species). The addition of municipal waste to the process of burning the conventional and alternative fuels studied did not significantly increase Cl−, SO42−, and PO43− content in aqueous extracts of ashes, the exception being diapers and plywood. In light of the study results, it was concluded that all the ashes could be reused (as an additive to concrete) except for the ash generated from the combustion of a mixed municipal waste fraction and coal (due to the content of Cl−) and diapers (due to the content of PO43−). It was demonstrated that Cl−, SO42−, and PO43− content in the entire set of samples and in individual ash groups is highly heterogeneous and variable.

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 194
Author(s):  
Joanna Pawłat ◽  
Piotr Terebun ◽  
Michał Kwiatkowski ◽  
Katarzyna Wolny-Koładka

Sterilization of municipal waste for a raw material for the production of refuse-derived fuel and to protect surface and ground waters against biological contamination during transfer and storage creates a lot of problems. This paper evaluates the antimicrobial potential of non-equilibrium plasma in relation to the selected groups of microorganisms found in humid waste. The proposed research is to determine whether mixed municipal waste used for the production of alternative fuels can be sterilized effectively using low-temperature plasma generated in a gliding arc discharge reactor in order to prevent water contamination and health risk for working staff. This work assesses whether plasma treatment of raw materials in several process variants effectively eliminates or reduces the number of selected groups of microorganisms living in mixed municipal waste. The presence of vegetative bacteria and endospores, mold fungi, actinobacteria Escherichia coli, and facultative pathogens, i.e., Staphylococcus spp., Salmonella spp., Shigella spp., Enterococcus faecalis and Clostridium perfringens in the tested material was microbiologically analyzed. It was found that the plasma treatment differently contributes to the elimination of various kinds of microorganisms in the analyzed raw materials. The effectiveness of sterilization depended mainly on the time of raw materials contact with low-temperature plasma. The results are very promising and require further research to optimize the proposed hygienization process.


2022 ◽  
pp. 146808742110667
Author(s):  
Akhilendra Pratap Singh ◽  
Ashutosh Jena ◽  
Avinash Kumar Agarwal

In the last decade, advanced combustion techniques of the low-temperature combustion (LTC) family have attracted researchers because of their excellent emission characteristics; however, combustion control remains the main issue for the LTC modes. The objective of this study was to explore premixed charge compression ignition (PCCI) combustion mode using a double pilot injection (DPI; pilot-pilot-main) strategy to achieve superior combustion control and to tackle the soot-oxides of nitrogen (NOx) trade-off. Experiments were carried out in a single-cylinder research engine fueled with 20% v/v biodiesel blended with mineral diesel (B20) and 40% v/v biodiesel blended with mineral diesel (B40) vis-à-vis baseline mineral diesel. Engine speed and rate of fuel-mass injected were maintained constant at 1500 rpm and 0.6 kg/h mineral diesel equivalent, respectively. Pilot injection timings (at 45° and 35° before top dead center (bTDC)) and fuel quantities were fixed, while three fuel injection pressures (FIPs) and four different start of the main injection (SoMI) timings were investigated in this study. Results showed that multiple pilot injections resulted in a stable PCCI combustion mode, making it suitable for higher engine loads. For all test fuels, advancing SoMI timings led to relatively lesser knocking; however, engine performance characteristics degraded at advanced SoMI timings. B40 exhibited relatively superior engine performance among different test fuels at lower FIP; however, the difference in engine performance was insignificant at higher FIPs. Fuel injection parameters showed a significant effect on emissions, especially on the NOx and particulates. Advancing SoMI timing resulted in 20%–50% lower particulates emissions with a slight NOx increase; however, the differences in emissions at different SoMI timings reduced at higher FIPs. Somewhat higher particulates from biodiesel blends were a critical observation of this study, which was more dominant at advanced SoMI timings. Qualitative correlation between NOx-total particulate mass (TPM) was another critical analysis, which exhibited the relative importance of different fuel injection parameters for other alternative fuels. Overall, B20 at 700 bar FIP and 20° SoMI timing emerged as the most promising proposition with some penalty in CO emission.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 2704-2709
Author(s):  
Ranjana Kohli ◽  
Madan L Kaushik ◽  
Jai Parkash Kadian ◽  
Bhupendra Chauhan

The anti-diabetic effect of ethanolic and aqueous extracts of Imperata cylindrical  rhizomes was investigated in alloxan-induced diabeties in rats. Diabetes was induced by a single 150 mg/kg intraperitoneal dose of alloxan. Rats were divided into five groups with six rats in each group i.e. the normal control group, diabetic control group, standard group (glibenclamide, 10mg/kg, p.o.), Test-I group (200 mg/kg ethanolic extract) and Test-II group (200 mg/kg aqueous extract). The above concerned groups were inoculated on 21st day. On the last day of the experiment, fasted rats were killed by cervical dislocation. The body weight was measured at the initial day and final day. The blood samples were collected for estimation of glucose. The loss of body weight in control group, but recovery was observed in drug treated group. The serum glucose level was significant increased in diabetic rats. However, significant improvement was observed in treated group. The biochemical parameters such as HDL and proteins level were decreased in the control group but maintained in drug treated group. LDL, cholesterol, triglyceride creatinine and urea were significant increase in control group however, reduced level in drug treated group. The present study concluded that ethanolic and aqueous extracts of I. cylindrical  rhizome showed an appreciable effect in reducing the hyperglycemia and the complications associated with diabetes. However, aqueous extract is found more significant in decreasing blood glucose level in comparison to the ethanolic extract. The study results justify the traditional use of the plant as anti-diabetic.


2022 ◽  
Author(s):  
Zhanhong Xiang ◽  
Karnsiree Chen ◽  
Charles McEnally ◽  
Lisa Pfefferle

With the growing importance of climate change, soot emissions from engines have been receiving increasing attention since black carbon is the second largest source of global warming. A sooting tendency can be used to quantify the extent of soot formation in a combustion device for a given fuel molecule, and therefore to quantify the soot reduction benefits of alternative fuels. However real fuels are complex mixtures of multiple components. In this work, we have used experimental methods to investigate how the sooting tendency of a blended fuel mixture is related to the sooting tendencies of the individual components. A test matrix was formulated that includes sixteen mixtures of six components that are representative of the main categories of hydrocarbons in diesel (eicosane (ECO) for alkanes, isocetane (ICE) for isoalkanes, butylcyclohexane (BCH) for cycloalkanes, 1-methylnaphthalene (1MN) for aromatics, tetralin for naphthoaromatics, and methyl-decanoate (MDC) for oxygenates). Most of the mixtures contain three to five components. The sooting tendency of each mixture was characterized by yield sooting index (YSI), which is based on the soot yield when a methane/air nonpremixed flame is doped with 1000 ppm of the test fuel. The YSIs were measured experimentally. The results show that the blending behavior is linear, i.e., the YSI of the mixtures is the mole-fraction-weighted average of the component YSIs. Experimental results have shown that the sooting tendency of a fuel mixture can be accurately estimated as the linear combination of the individual components. In addition, mass density of the mixtures is also measured, and a linear blending rule is applied to test whether mixing rules exist for mass density of diesel mixtures in this study. Results also have shown that the mixing rule tested in this study is valid and mass density of a mixture can be accurately estimated from the linear combination of the individual components.


2018 ◽  
Vol 44 ◽  
pp. 00041
Author(s):  
Jolanta Fieducik

This article presents an innovative solution for drying waste in bioreactors on the example of the Municipal Waste Treatment Plant (ZUOK) in Olsztyn. Shredded mixed waste undergoes fermentation in bioreactors and produces heat for waste drying. Waste transported to the plant is divided into sorted waste which is recycled and mixed waste which is processed into different size fractions. Processed waste is used in the production of alternative fuel which can be burned in dedicated systems in cement plants or incineration plants. Around 5-15% of waste cannot be processed and is landfilled.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2468 ◽  
Author(s):  
Arkadiusz Dyjakon ◽  
Tomasz Noszczyk

The global energy system needs new, environmentally friendly, alternative fuels. Biomass is a good source of energy with global potential. Forestry biomass (especially wood, bark, or trees fruit) can be used in the energy process. However, the direct use of raw biomass in the combustion process (heating or electricity generation) is not recommended due to its unstable and low energetic properties. Raw biomass is characterized by high moisture content, low heating value, and hydrophilic propensities. The initial thermal processing and valorization of biomass improves its properties. One of these processes is torrefaction. In this study, forestry biomass residues such as horse chestnuts, oak acorns, and spruce cones were investigated. The torrefaction process was carried out in temperatures ranging from 200 °C to 320 °C in a non-oxidative atmosphere. The raw and torrefied materials were subjected to a wide range of tests including proximate analysis, fixed carbon content, hydrophobicity, density, and energy yield. The analyses indicated that the torrefaction process improves the fuel properties of horse chestnuts, oak acorns, and spruce cones. The properties of torrefied biomass at 320 °C were very similar to hard coal. In the case of horse chestnuts, an increase in fixed carbon content from 18.1% to 44.7%, and a decrease in volatiles from 82.9% to 59.8% were determined. Additionally, torrefied materials were characterized by their hydrophobic properties. In terms of energy yield, the highest value was achieved for oak acorns torrefied at 280 °C and amounted to 1.25. Moreover, higher heating value for the investigated forestry fruit residues ranged from 24.5 MJ·kg−1 to almost 27.0 MJ·kg−1 (at a torrefaction temperature of 320 °C).


Author(s):  
CHALINI K. ◽  
JOHNSON M. ◽  
ADAIKALARAJ G. ◽  
VIDYARANI GEORGE ◽  
RAMAKRISHNAN P.

Objective: In the present investigation an attempt was made to examine the anti-inflammatory potential of aqueous extracts of Gracilaria salicornia C. Ag., Gracilaria edulis (Gmelin) Silva, Gracilaria corticata J. Ag., Gracilaria fergusonii J. Ag.,and Gracilaria verrucosa (Hudson) Papenfus from Mandapam, Gracilaria edulis (Gmelin) Silva., Gracilaria verrucosa (Hudson) Papenfus from Pulicate Lake, Gracilaria fergusonii J. Ag., Gracilaria corticata J. Ag. and Gracilaria corticata J. Ag. var. cylindrica from Tuticorin using heat induced haemolysis of RBC. In addition, the present study is focused to reveal the locality specific anti-inflammatory activities of selected Gracillaria species.Methods: The fresh seaweeds were boiled with distilled water (1:20 W/V) for 2 h. The slurry was filtered through Whatman No. 41 filter paper and condensed. The semi-solid crude extracts were used for anti-inflammatory analysis.Results: An aqueous extracts of studied Gracilaria species were effective in inhibiting the heat induced haemolysis at different concentrations. The results showed the dose dependent protection. The percentage of anti-inflammatory activity of studied Gracillaria was varied from 43.81 to 95.55. The highest percentage (95.55%) of activity was observed in 250 µg/ml of G. edulis aqueous extracts. The anti-inflammatory activity of studied Gracillaria species at 250 µg/ml were as follows G. edulis (Mandabam)>G. corticata (Mandabam)>G. verucosa (Mandabam)>G. salicornia (Mandabam)>G. ferugosonii (Tuticorin)>G. ferugosonii (Mandabam)>G. edulis (Pulicate)>G. corticata (Tuticorin)>G. verucosa (Pulicate)>G. corticata var. cylindrica (Tuticorin).Conclusion: The results of the present study clearly explained the anti-inflammatory potential of the studied Gracillaria species. The aqueous 0extracts of Gracillaria collected from Mandapam showed the highest percentage of protection activity. This study results confirm the existence of active principle responsible for the anti-inflammatory activity. Further studies are required to isolate the active principles without any side effects.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 504
Author(s):  
Danuta Smołka-Danielowska ◽  
Agata Walencik-Łata

The paper presents the results of research on rare earth elements (REY) and selected radionuclides in barren rocks deposited on a heap at a mine belonging to the Polish Mining Group (the largest producer of hard coal in EU countries). The maximum concentration of REEs determined in silstones was 261.6 mg/kg and in sandstones 221.2 mg/kg. The average uranium and thorium content in silstones was 6.8 mg/kg and 11.6 mg/kg, respectively. On the other hand, the samples of burnt coal shales contain on average 3.5 mg/kg of uranium and 9.7 mg/kg of thorium. In all coal waste samples, the REE values are higher than in hard coal (15.7 mg/kg). Carriers of REY, uranium, and thorium in coal waste are detritic minerals: monazite and xenotime, which are part of the grain skeleton of barren rocks. Coal waste samples are characterized by a variable distribution of REY concentrations as well as a variable content of radionuclides. The 226Ra, 228Ra, and 40K measurements in the investigated samples were performed using the gamma spectrometry technique. The concentrations of the analyzed isotopes differed depending on the mineralogical composition of the investigated samples. The present study results may be important in determining the possibility of utilization of wastes of barren rocks stored in the mine heap and in assessing environmental and radiological hazards.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Xuan Zhao ◽  
Xing-hui Yu ◽  
Guo-ying Zhang ◽  
Hai-ying Zhang ◽  
Wei-wei Liu ◽  
...  

Cancer has become the leading cause of mortality since 2010 in China. Despite the remarkable advances in cancer therapy, a low survival rate is still a burden to the society. The antineoplastic activity of aqueous extracts ofCordyceps kyushuensisKob (AECK) was measured in this study. Results showed that AECK can significantly inhibit the proliferation and viability of U937 and K562 when treated with different concentrations of AECK, and the IC50values of U937 and K562 were 31.23 μg/ml and 62.5 μg/ml, respectively. Hoechst 33258 staining showed that AECK could cause cell shrinkage, chromatin, condensation, and cytoplasmic blebbing, and DNA ladder experiment revealed the evident feature of DNA fragmentation which showed that AECK could induce cell apoptosis. Moreover, AECK gave rise to intrinsic apoptosis through increasing the amount of Ca2+and downregulating the expression of Bcl-2. Meanwhile, the level of Fas death receptor was elevated which indicated that AECK could lead to exogenous apoptosis in U937. The expressions of oncogene c-Myc and c-Fos were suppressed which manifested that AECK could negatively regulate the growth, proliferation, and tumorigenesis of U937 cells. This research presented the primary antitumor activity of AECK which would contribute to the widely use ofCordyceps kyushuensisKob as a functional food and medicine.


Sign in / Sign up

Export Citation Format

Share Document