scholarly journals Compare the Levels of Use of Activated Carbons for Water Treatment and Biogas Purification as Well as Their Reactive Abilities

2021 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Łukasz Winconek ◽  
Katarzyna Ignatowicz

The conducted research concerned a comparison of the levels of use of activated carbons purifying water and biogas, and their reactivation capacity. The process of reactivation of both activated carbons was carried out using laboratory kiln. Reactivation was carried out in identical conditions for both tested samples. The obtained results proved that both activated carbons can be regenerated although they differ significantly in degree of use. It was proven that the technological process, the degree of contamination, and the contact time of activated carbon with the medium have a significant impact on the quality, speed, and success of the reactivation process.

1988 ◽  
Vol 20 (8-9) ◽  
pp. 229-236 ◽  
Author(s):  
E. A. Vik ◽  
R. Storhaug ◽  
H. Naes ◽  
H. C. Utkilen

Water blooms of O.bornettii, a producer of off-flavour compounds, occasionally occur in Lake Mjoesa. Accordingly a new water works is planned to alleviate the associated taste and odour problems. A pilot plant was constructed in 1985 and a continuous water treatment study was performed over a one year period. Granular activated carbon (GAC) was compared with ozonation-GAC. Filtrasorb-400 was used and the empty-bed contact-time of the GAC-filters was 21 min. The ozone dosage varied from 2 to 5 mg O3/l. To simulate water blooms, commercially produced geosmin and 2-methyliso-borneol (MIB) were added to the water in concentrations from 10 to 190 ng/l. A slightly higher TOC-uptake was seen in the ozonation-GAC combination. This may indicate that the ozonation process is forming organic oxidation products that are competing with the geosmin and MIB for adsorption sites in the GAC-filter.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 265-270
Author(s):  
R. McCallum ◽  
F. Roddick ◽  
M. Hobday

Water treatment authorities use activated carbon as the best available technology to remove low molecular weight organic compounds from potable water. In Australia, pollutants of concern include secondary metabolites from bacterial and cyanobacterial blooms which are highly odorous and, in some cases, toxic. Of these compounds, 2-methylisoborneol (MIB) is one of the most common and its unpleasant musty earthy odour can be detected at or above approximately 10 ng/L. Difficulties in using activated carbon to target such small organic compounds arise when the water has high concentrations of natural organic matter (NOM), as these compounds also adsorb on activated carbon. The adsorption of NOM on activated carbon increases the cost of using this material in water treatment due to competition with the target organic compounds, reducing the capacity of the activated carbon for the latter. The surface of activated carbon can be tailored during production to provide physical and chemical characteristics that can either aid or hinder the adsorption of particular compounds. One source of activated carbon currently under investigation at RMIT University is brown coal char waste from power stations. This waste, currently disposed of to landfill, is potentially an option for activated carbon production. This material has the advantage that it has already been carbonised at around 500°C in the power generation process. This means that less energy is required to produce activated carbon from power station char compared to coal, making the final product cheaper to produce. Previous work at RMIT has shown that steam activated power station char can remove organic compounds from water. Production of a range of activated carbons from power station char (PSC) was undertaken using different activation methods, including steam activation, steam activation with acid pre-treatment, alkali heat treatment, and Lewis acid heat treatment. The different activation methods produced activated carbons with different pore size distributions, in particular, the acid pre-treatment increased the surface area and porosity significantly compared with steam activation, and the alkali treatment increased the microporosity. Adsorption of MIB on these activated carbons was evaluated to determine the relationship between physical and chemical interactions of the activated carbon and adsorption. Adsorption of MIB on these activated carbons was found to be dependent on the secondary micropore volume. Lewis acid treatment and alkali treatment was not involved in the generation of many of these secondary pores, hence carbons from these treatments did not perform well in adsorption tests. The best adsorption results were achieved with steam activated or acid treated steam activated samples which performed comparably to commercial products. Initial results showed that competition from NOM adsorption was lowest with the PSC activated carbons, allowing greater adsorption of MIB, compared with the commercial activated carbons.


2019 ◽  
Vol 14 (4) ◽  
pp. 897-907 ◽  
Author(s):  
Hosseinali Asgharnia ◽  
Hamidreza Nasehinia ◽  
Roohollah Rostami ◽  
Marziah Rahmani ◽  
Seyed Mahmoud Mehdinia

Abstract Phenol and its derivatives are organic pollutants with dangerous effects, such as poisoning, carcinogenicity, mutagenicity, and teratogenicity in humans and other organisms. In this study, the removal of phenol from aqueous solution by adsorption on silica and activated carbon of rice husk was investigated. In this regard, the effects of initial concentration of phenol, pH, dosage of the adsorbents, and contact time on the adsorption of phenol were investigated. The results showed that the maximum removal of phenol by rice husk silica (RHS) and rice husk activated carbon (RHAC) in the initial concentration of 1 mgL−1 phenol, 2 gL−1 adsorbent mass, 120 min contact time, and pH 5 (RHS) or pH 6 (RHAC) were obtained up to 91% and 97.88%, respectively. A significant correlation was also detected between increasing contact times and phenol removal for both adsorbents (p < 0.01). The adsorption process for both of the adsorbents was also more compatible with the Langmuir isotherm. The results of this study showed that RHS and RHAC can be considered as natural and inexpensive adsorbents for water treatment.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Victor O. Fatokun ◽  
Femi K. Owofadeju ◽  
Oluseyi E. Ewemoje ◽  
Temitayo A. Ewemoje

Textile industries wastewater contains pollutants which vary greatly and depend on the chemicals and treatment processes used. Toxic heavy metals in wastewater are discharged into the environment, which adversely affect human, aquatic life, and natural water bodies. This study was therefore designed to investigate adsorption of heavy metal ions (Cadmium, Zinc, Manganese, Chromium and iron) in raw textile wastewater using activated carbon from Cordia millenii and Gmelina arborea wood species. Carbon structural pattern was examined using SEM equipment. Batch sorption tests were conducted in wastewater treatment by varying absorbent contact time with the sorbate from 30 to 120minutes (at 30minutes intervals) to facilitate attainment of equilibrium condition. The pore space diameter mean values were 9.28±1.22 and 4.45±1.57µm for Cordia millenii Carbon (CMC) and Gmelina arborea Carbon (GAC) respectively. It was observed that over 80% Manganese removal was achieved at 120minutes contact time for both carbon studied. Highest removal efficiencies was observed at all contact times in GAC for iron while in CMC for Chromium, Cadmium, Zinc and Manganese between 30-90minutes contact time. After 120 minutes contact time, there was insignificant difference in removal efficiency for Chromium and Manganese. However, at 30minutes contact time, percentage removal of over 60% was obtained for Manganese, implying that Manganese has high mobility towards the adsorbents surface. The activated carbons obtained from these two wood species are therefore viable options for heavy metal removal from textile effluents. Keywords— Adsorption, activated carbon, Cordia millenii carbon, Gmelina arborea carbon, heavy metals.


2013 ◽  
Vol 30 ◽  
pp. 13-23 ◽  
Author(s):  
Sahira Joshi ◽  
Mandira Adhikari ◽  
Raja Ram Pradhananga

The potentials of activated carbon derived from Lapsi (Choerospondias axillaries) seed stone after impregnation with zirconium for adsorptive removal of fluoride is presented. Activated carbons from Lapsi seed stone were prepared by three different techniques. Firstly by directly burning in limited supply of air, secondly by treating with a mixture of conc. H2SO4 and HNO3 (in the ratio of 1:1 by weight) and thirdly by activation with zinc chloride (in the ratio of 1:1 by weight) followed by carbonization at 400°C and 500°C under nitrogen atmosphere. Thus prepared carbons were impregnated with zirconyl oxychloride and effects of pH, adsorbent dose, and contact time and adsorbate concentration for the removal of fluoride were evaluated by batch mode. The optimum pH for adsorption of fluoride was observed at pH 3-4, and a minimum contact time for the maximum defluoridation was found to be 180 min. The Langmuir and Freundlich isotherms were used to describe adsorption equilibrium. Zirconium impregnation increased the fluoride adsorption capacity of carbon to considerable extent. Among carbon prepared by three different techniques, the carbon prepared from zinc chloride activation followed by carbonization showed relatively higher fluoride adsorption capacity. From the experiment it is concluded that activated carbon prepared from Lapsi seed is an efficient, low-cost alternative to commercial activated carbon for defluoridation of water.DOI: http://dx.doi.org/10.3126/jncs.v30i0.9330Journal of Nepal Chemical Society Vol. 30, 2012 Page:  13-23 Uploaded date: 12/16/2013    


2013 ◽  
Vol 11 (5) ◽  
pp. 742-753 ◽  
Author(s):  
Marzena Dabioch ◽  
Robert Skorek ◽  
Andrzej Kita ◽  
Piotr Janoska ◽  
Katarzyna Pytlakowska ◽  
...  

AbstractElements that enter the aquatic environment may pose a health risk to wildlife and humans. The aims of this study were: to determine how the introduction of activated carbon for a water purification system will improve the quality of the water produced; and to investigate the sorption of metals on activated carbons, including determination of the accumulation, as well as changes in concentrations of elements in carbons. The tests were carried out on three types of activated carbons with different granular structure. All samples were collected from Water Treatment Plant Goczalkowice, Poland. Concentrations of elements were measured using an optical emission spectrometer with inductively coupled plasma. The experiment showed that metals accumulating in the activated carbons during the operation included: Ca, Mn, Zn, and Cu. In each of the three types of carbons, it can distinguish such elements as Ba, Al, Cr, Ni, Ti, which are characterized by irregular accumulation during the operation of the filter. The introduction of carbon sorbent for water treatment largely contributed to improvement in the quality of raw material supplied to customers, mainly with regard to taste and smell, as well as to reduction of basic parameters: color, absorbance in the UV range and oxidability.


2002 ◽  
Vol 46 (9) ◽  
pp. 339-346 ◽  
Author(s):  
M.R. Salim ◽  
F. Othman ◽  
Md. Imtiaj Ali ◽  
J. Patterson ◽  
T. Hardy

Several types of water treatment technologies including adsorption are now being used to treat polluted water. In this paper the removal of phenol by adsorption will be discussed. Activated carbons are successfully applied for purification of potable water and the removal of organic pollutants in wastwater. This paper is concerned with a low cost approach to treating waste water that is significant especially for those countries where oil palm is an available agricultural product like Malaysia, Ivory Coast, Nigeria, Thailand, Papua New Guinea. In the coastal region coconut is an available agricultural product and activated carbon prepared using coconut shell is also an economical method of water treatment. The materials used in this study were Commercial Activated Carbon (CAC), prepared from coconut shell and Modified Oil Palm Shell (MOPAS) of 1 to 2 mm diameters. The surface area of CAC and MOPAS was 38.5 m2/g and 38.2 m2/g respectively and the iodine number was determined as 674 and 454 for CAC and MOPAS, respectively. From the study the result shows above 70% removal efficiency for 5 mg/L and 40% removal efficiency for 20 mg/L of phenol solution. The performance efficiency will be discussed based on batch test, following Freundlich adsorption isotherm.The results indicate that CAC exhibits a higher adsorptive capacity (Kf of 0.079) as compared to MOPAS (Kf of 0.048). Hence a better removal efficiency for CAC at lower concentration of phenol. Results from column tests show a better adsorptive capacity for CAC (2.73) as compared to MOPAS (2.48).


2020 ◽  
Vol 1013 ◽  
pp. 75-80
Author(s):  
I Putu Hari Wangsa ◽  
Tjokorda Gde Tirta Nindhia ◽  
Dewa Ngakan Ketut Putra Negara ◽  
I Wayan Surata

Biogas is known to contain mainly methane (CH4), and other gas impurities such as carbon dioxide (CO2), and hydrogen sulfide (H2S). Biogas should be purified to remove gas impurities prior to be used as a fuel. Activated carbon is a famous biogas purifier. Commercial activated carbons are found expensive due to high cost during production. New routes for low cost production of activated carbon are still in progress. Many natural sources were explored for production of low cost and good quality activated carbon. One of the natural sources of raw material of activated carbon is bamboo. The bamboo from species of Gigantochloa verticillata from the tropical source of Indonesia was prepared for this purpose. The bamboo was cut from the tree, dried under the sun and cut to small pieces. The dried small pieces of bamboo cut were carbonized at 700 °C for 1.5 hours in air-tight chamber made from steel. The sample then was crushed and screen in 3 different particle sizes, namely: 150-250 mesh, 250-350 mesh and 350-450 mesh. About 100 gram of carbonized bamboo from these three variations were activated at 750°C for 1 hour in around 5100 cm3 steel chamber with nitrogen gas (N2) was flowed with rate 350 ml/minute. The result of activated carbon were analyzed by using TGA (thermo gravimetric analyses) for moisture, volatile, ash and fixed carbon composition test. The activated carbon then was set in acrylic tube for biogas purification. Around 200 liters of raw biogas were collected in PVC bag. The biogas was flowed with flow rate 500 mL/minute. The biogas composition before and after passing the activated carbon was measured in three time repetitions. The results indicate that the activated carbon made from Gigantochloa verticillata bamboo developed in this work is promising biogas purifier.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7045
Author(s):  
Justyna Kazmierczak-Razna ◽  
Anetta Zioła-Frankowska ◽  
Piotr Nowicki ◽  
Marcin Frankowski ◽  
Robert Wolski ◽  
...  

This paper deals with the adsorption of heavy metal ions (Cu2+ and Zn2+) on the carbonaceous materials obtained by chemical activation and ammoxidation of Polish brown coal. The effects of phase contact time, initial metal ion concentration, solution pH, and temperature, as well as the presence of competitive ions in solution, on the adsorption capacity of activated carbons were examined. It has been shown that the sample modified by introduction of nitrogen functional groups into carbon structure exhibits a greater ability to uptake heavy metals than unmodified activated carbon. It has also been found that the adsorption capacity increases with the increasing initial concentration of the solution and the phase contact time. The maximum adsorption was found at pH = 8.0 for Cu(II) and pH = 6.0 for Zn(II). For all samples, better fit to the experimental data was obtained with a Langmuir isotherm than a Freundlich one. A better fit of the kinetic data was achieved using the pseudo-second order model.


2013 ◽  
Vol 15 (4) ◽  
pp. 504-512

<p>The objective of this pilot study was to evaluate the performance of Powdered Activated Carbon (PAC) for the removal of individual trihalomethanes (THMs) from chlorinated drinking water, Athens, Greece. The pilot treatment facility was located at the Water Treatment Plant of EYDAP (Athens Water Supply and Sewerage Company) in Galatsi, Athens, and consisted of two mixing tanks operating as open batch reactors, which were fed with chlorinated water from the overflow of the sedimentation tanks. Experimental cycles were performed, with different PAC doses ranging from 5 to 50 mg L-1 and with contact times 30 and 60 min for each cycle. Water samples taken at the start of each cycle and after contact with PAC, were analysed for individual THMs and Dissolved Organic Carbon (DOC). Bromide, free residual chlorine, pH and temperature were also measured. From the experimental results, it was shown that all THMs concentrations were decreased after PAC contact, the decrease being higher for higher PAC dose and higher contact time, with few exceptions. This fact probably indicates that adsorption rate plus volatilisation rate of THMs overcame formation rate, in most cases. It was also concluded that volatilisation and possible formation reactions of THMs had probably a more apparent effect to the total removal of most THMs at low PAC doses and low contact time. At higher PAC doses and higher contact time, PAC adsorption probably had an increased contribution to THMs removal, because of the larger carbon surface area and the longer contact time, resulting in higher adsorbed mass according to adsorption theory. By using isotherm results of individual THMs on activated carbon by other researchers, the theoretically adsorbed mass of THMs per g of PAC was roughly estimated and compared with the measured removed mass of THMs per g of PAC at PAC dose 50 mg L-1 and contact time 60 min for most THMs, on the assumption of equilibrium achievement. The removed mass of THMs by PAC appeared much higher than the theoretically adsorbed, especially for the most volatile members. The difference was attributed to volatilisation taking place in the open mixing tanks. In conclusion, the practical results from the application of PAC for the removal of THMs are much better than expected from single adsorption by PAC. Volatility of THMs, especially of chloroform (TCM), substitutes for weak adsorbability and gives increased removal. The influent DOC was almost constant in all experiments. The removal of DOC was generally higher for increased PAC dose and contact time. Although equilibration cannot have happened for DOC, the mass removal of DOC per g of PAC was higher by more than two orders of size than that of the smaller and in lower concentration THMs, as expected.</p>


Sign in / Sign up

Export Citation Format

Share Document