scholarly journals Effects of Forestry Transformation on the Landscape Level of Biodiversity in Poland’s Forests

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1682
Author(s):  
Ewa Referowska-Chodak ◽  
Bożena Kornatowska

At all times, historical, political, economic, and social factors have affected the management of forests, with direct and indirect effects on the landscape. This study aimed to trace the impact of Poland’s forestry evolution over the last 75 years (1945–2020) on forest biodiversity at the landscape level. Five indicators were selected (forest area, forest fragmentation, protected forests, protective forests, harvesting intensity) to identify directions and dynamics of changes of the forest landscape and their determinants and repercussions. In addition, there were determined forest landscapes threats and recommendations for further action and intervention were formulated. The study period embraced two eras of widely divergent political-economic conditions in Poland (socialism and democracy). In the socialism era (1945–1989), there promptly increased total forest cover, wood resources (total growing stock) and the total area of protective forests (essential for safeguarding biodiversity, including the landscape level). In the era of democracy (1990–2020), average growing stock density increased intensely, and at the same time, a greater emphasis was put on reducing forest fragmentation and clear-cut logging. The results obtained showed equal average increase in the area of protected forests in both eras under the study (most intense at their crossing point). In view of the protection of biodiversity at the forest landscape level, the changes throughout the study period were considered positive, although not without problems and challenging consequences for foresters. The determined pressures to the forest landscapes, requiring legal, political, or financial solutions, include a risk of alteration of the ownership structure of Poland’s forests or possibility of operational changes in the State Forests National Forest Holding; outdated forest policies; organizational difficulties in the forest landscape protection; insufficient conservation funding; uneven distribution and further fragmentation of forests; and—last but not least—climate change impacts, including extreme weather events and droughts.

2018 ◽  
Vol 10 (9) ◽  
pp. 1386 ◽  
Author(s):  
Ashley Van Beusekom ◽  
Nora Álvarez-Berríos ◽  
William Gould ◽  
Maya Quiñones ◽  
Grizelle González

The impact of Hurricane Maria on the U.S. Caribbean was used to study the causes of remotely-sensed spatial variation in the effects of (1) vegetation index loss and (2) landslide occurrence. The vegetation index is a measure of canopy ‘greenness’, a combination of leaf chlorophyll, leaf area, canopy cover and structure. A generalized linear model was made for each kind of effect, using idealized maps of the hurricane forces, along with three landscape characteristics that were significantly associated. In each model, one of these characteristics was forest fragmentation, and another was a measure of disturbance-propensity. For the greenness loss model, the hurricane force was wind, the disturbance-propensity measure was initial greenness, and the third landscape characteristic was fraction forest cover. For the landslide occurrence model, the hurricane force was rain, the disturbance-propensity measure was amount of land slope, and the third landscape characteristic was soil clay content. The model of greenness loss had a pseudo R2 of 0.73 and showed the U.S. Caribbean lost 31% of its initial greenness from the hurricane, with 51% lost from the initial in the Luquillo Experimental Forest (LEF) from Hurricane Maria along with Hurricane Irma. More greenness disturbance was seen in areas with less wind sheltering, higher elevation and topographic sides. The model of landslide occurrence had a pseudo R2 of 0.53 and showed the U.S. Caribbean had 34% of its area and 52% of the LEF area with a landslide density of at least one in 1 km2 from Hurricane Maria. Four experiments with parameters from previous storms of wind speed, storm duration, rainfall, and forest structure over the same storm path and topographic landscape were run as examples of possible future scenarios. While intensity of the storm makes by far the largest scenario difference, forest fragmentation makes a sizable difference especially in vulnerable areas of high clay content or high wind susceptibility. This study showed the utility of simple hurricane force calculations connected with landscape characteristics and remote-sensing data to determine forest susceptibility to hurricane effects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadeeja Henna ◽  
Aysha Saifudeen ◽  
Monto Mani

AbstractClimate change impacts buildings in multiple ways, including extreme weather events and thermal stresses. Rural India comprising 65% of the population is characterised by vernacular dwellings evolved over time to passively regulate and maintain comfortable indoors. Increasing modernization in rural habitations (transitions) evident from the ingress of modern materials and electro-mechanical appliances undermines the ability of building envelopes to passively regulate and maintain comfortable indoors. While such trends are deemed good for the economy, their underlying implications in terms of climate change have not been adequately examined. The current study evaluates the climate-resilience of vernacular dwellings and those undergoing transitions in response to three climate-change scenarios, viz, A1B (rapid economic growth fuelled by balanced use of energy sources), A2 (regionally sensitive economic development) and B1 (structured economic growth and adoption of clean and resource efficient technologies). The study examines dwellings characteristic to three rural settlements representing three major climate zones in India and involves both real-time monitoring and simulation-based investigation. The study is novel in investigating the impact of climate change on indoor thermal comfort in rural dwellings, adopting vernacular and modern materials. The study revealed higher resilience of vernacular dwellings in response to climate change.


2020 ◽  
pp. 074391562097656
Author(s):  
Laurel Steinfield ◽  
Srinivas Venugopal ◽  
Samuelson Appau ◽  
Andres Barrios ◽  
Charlene Dadzie ◽  
...  

Environmental disruptions, such as extreme weather events or poisoning of natural resources, are increasing in frequency and intensity. These critical global problems demand market- and policy-based solutions. Adopting a transformative consumer research perspective, this article examines the effects of environmental disruptions on the livelihoods of a very vulnerable group: nature dependent prosumers (NDPs). NDPs often live in subsistence markets, but the impact of environmental disruptions on their lives can have repercussions throughout local and global systems. This article thus offers practitioners and researchers a framework– the ‘cross-scale intersectionality matrix’ (CSIM)— to better understand the differing impacts of environmental disruptions and envisage effective solutions. The CSIM reveals how environmental disruptions impact marketing systems’ exchanges of production and consumption: i) across multiple spatiotemporal scales, resulting in cross-scale impacts (per eco-systems theory); and ii) in diverse ways for groups/individuals experiencing intersectional power asymmetries such as geo-political/economic power, classism/ableism and sexism (per intersectionality theory). Building on insights from the CSIM framework, this paper proposes improvements to research, and policy and market-based solutions intended to enhance the well-being of NDPs.


ÈKOBIOTEH ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 435-443
Author(s):  
K.M. Gabdrahim ◽  
◽  
R.R. Baiturina ◽  

The article is devoted to the study of the influence of environmental environmental factors on the health of residents of the Republic of Bashkortostan. In the course of the work, the tasks set were studied to study the spatially distributed dynamics of the incidence of the region’s population in recent years, to analyze the impact of environmental pollution on the morbidity of the population, and to identify the dependence of the forest cover on the main health indicators of residents. The paper analyzes the relationship between indicators of the state of human health and the forest cover of the territory in the administrative regions of the region. In order to study the importance of trees for residents, a sociological survey of more than 1000 people was conducted among residents and guests of the capital of the republic on the effect of plantings on the health status of residents, their attitude to the environment and forest landscape. The well-being and health of people depends on the forest cover of the territory, therefore it is necessary to pay special attention to the forest, as one of the significant factors in improving the environment and the health of people.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245991
Author(s):  
Washington Luis Oliveira ◽  
Marcelo Brilhante Medeiros ◽  
Pamela Moser ◽  
Marcelo Fragomeni Simon

Extreme weather events and the presence of mega-hydroelectric dams, when combined, present an emerging threat to natural habitats in the Amazon region. To understand the magnitude of these impacts, we used remote sensing data to assess forest loss in areas affected by the extreme 2014 flood in the entire Madeira River basin, the location of two mega-dams. In addition, forest plots (26 ha) were monitored between 2011 and 2015 (14,328 trees) in order to evaluate changes in tree mortality, aboveground biomass (AGB), species composition and community structure around the Jirau reservoir (distance between plots varies from 1 to 80 km). We showed that the mega-dams were the main driver of tree mortality in Madeira basin forests after the 2014 extreme flood. Forest loss in the areas surrounding the reservoirs was 56 km2 in Santo Antônio, 190 km2 in Jirau (7.4–9.2% of the forest cover before flooding), and 79.9% above that predicted in environmental impact assessments. We also show that climatic anomalies, albeit with much smaller impact than that created by the mega-dams, resulted in forest loss along different Madeira sub-basins not affected by dams (34–173 km2; 0.5–1.7%). The impact of flooding was greater in várzea and transitional forests, resulting in high rates of tree mortality (88–100%), AGB decrease (89–100%), and reduction of species richness (78–100%). Conversely, campinarana forests were more flood-tolerant with a slight decrease in species richness (6%) and similar AGB after flooding. Taking together satellite and field measurements, we estimate that the 2014 flood event in the Madeira basin resulted in 8.81–12.47 ∙ 106 tons of dead biomass. Environmental impact studies required for environmental licensing of mega-dams by governmental agencies should consider the increasing trend of climatic anomalies and the high vulnerability of different habitats to minimize the serious impacts of dams on Amazonian biodiversity and carbon stocks.


Author(s):  
Adibah Binti AbdulRahim

ABSTRACT Secularism is the most serious challenge of modernity posed by the West. Its main ideology is to liberate man from the religious and metaphysical values and expel religion from the practical aspect of man’s life. It clearly presents its materialistic viewpoint which is cut off from Divine, Transcendent or Supernatural principles and does not refer to and is isolated from Revelation. In terms of its intensity and scope as well as its discernable effects upon people’s mind, the repercussion of secularism is so pervasive and universal. It gives a great impact on every facet of life including individual and family lives as well as educational, political, economic and social-cultural realm. Most importantly, secularism affects the very tenets of traditional religious beliefs and practices. This paper tries to focus on the danger of secularism and its principles which are contradict to the religious worldview.  


2020 ◽  
Vol 12 (19) ◽  
pp. 3226
Author(s):  
Daniel Cunningham ◽  
Paul Cunningham ◽  
Matthew E. Fagan

Global tree cover products face challenges in accurately predicting tree cover across biophysical gradients, such as precipitation or agricultural cover. To generate a natural forest cover map for Costa Rica, biases in tree cover estimation in the most widely used tree cover product (the Global Forest Change product (GFC) were quantified and corrected, and the impact of map biases on estimates of forest cover and fragmentation was examined. First, a forest reference dataset was developed to examine how the difference between reference and GFC-predicted tree cover estimates varied along gradients of precipitation and elevation, and nonlinear statistical models were fit to predict the bias. Next, an agricultural land cover map was generated by classifying Landsat and ALOS PalSAR imagery (overall accuracy of 97%) to allow removing six common agricultural crops from estimates of tree cover. Finally, the GFC product was corrected through an integrated process using the nonlinear predictions of precipitation and elevation biases and the agricultural crop map as inputs. The accuracy of tree cover prediction increased by ≈29% over the original global forest change product (the R2 rose from 0.416 to 0.538). Using an optimized 89% tree cover threshold to create a forest/nonforest map, we found that fragmentation declined and core forest area and connectivity increased in the corrected forest cover map, especially in dry tropical forests, protected areas, and designated habitat corridors. By contrast, the core forest area decreased locally where agricultural fields were removed from estimates of natural tree cover. This research demonstrates a simple, transferable methodology to correct for observed biases in the Global Forest Change product. The use of uncorrected tree cover products may markedly over- or underestimate forest cover and fragmentation, especially in tropical regions with low precipitation, significant topography, and/or perennial agricultural production.


2021 ◽  
Vol 13 (11) ◽  
pp. 6106
Author(s):  
Irantzu Alvarez ◽  
Laura Quesada-Ganuza ◽  
Estibaliz Briz ◽  
Leire Garmendia

This study assesses the impact of a heat wave on the thermal comfort of an unconstructed area: the North Zone of the Island of Zorrotzaurre (Bilbao, Spain). In this study, the impact of urban planning as proposed in the master plan on thermal comfort is modeled using the ENVI-met program. Likewise, the question of whether the urbanistic proposals are designed to create more resilient urban environments is analyzed in the face of increasingly frequent extreme weather events, especially heat waves. The study is centered on the analysis of temperature variables (air temperature and average radiant temperature) as well as wind speed and relative humidity. This was completed with the parameters of thermal comfort, the physiological equivalent temperature (PET) and the Universal Temperature Climate Index (UTCI) for the hours of the maximum and minimum daily temperatures. The results demonstrated the viability of analyzing thermal comfort through simulations with the ENVI-met program in order to analyze the behavior of urban spaces in various climate scenarios.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 265
Author(s):  
Mihnea Cățeanu ◽  
Arcadie Ciubotaru

Laser scanning via LiDAR is a powerful technique for collecting data necessary for Digital Terrain Model (DTM) generation, even in densely forested areas. LiDAR observations located at the ground level can be separated from the initial point cloud and used as input for the generation of a Digital Terrain Model (DTM) via interpolation. This paper proposes a quantitative analysis of the accuracy of DTMs (and derived slope maps) obtained from LiDAR data and is focused on conditions common to most forestry activities (rough, steep terrain with forest cover). Three interpolation algorithms were tested: Inverse Distance Weighted (IDW), Natural Neighbour (NN) and Thin-Plate Spline (TPS). Research was mainly focused on the issue of point data density. To analyze its impact on the quality of ground surface modelling, the density of the filtered data set was artificially lowered (from 0.89 to 0.09 points/m2) by randomly removing point observations in 10% increments. This provides a comprehensive method of evaluating the impact of LiDAR ground point density on DTM accuracy. While the reduction of point density leads to a less accurate DTM in all cases (as expected), the exact pattern varies by algorithm. The accuracy of the LiDAR-derived DTMs is relatively good even when LiDAR sampling density is reduced to 0.40–0.50 points/m2 (50–60 % of the initial point density), as long as a suitable interpolation algorithm is used (as IDW proved to be less resilient to density reductions below approximately 0.60 points/m2). In the case of slope estimation, the pattern is relatively similar, except the difference in accuracy between IDW and the other two algorithms is even more pronounced than in the case of DTM accuracy. Based on this research, we conclude that LiDAR is an adequate method for collecting morphological data necessary for modelling the ground surface, even when the sampling density is significantly reduced.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 959
Author(s):  
Benjamin Clark ◽  
Ruth DeFries ◽  
Jagdish Krishnaswamy

As part of its nationally determined contributions as well as national forest policy goals, India plans to boost tree cover to 33% of its land area. Land currently under other uses will require tree-plantations or reforestation to achieve this goal. This paper examines the effects of converting cropland to tree or forest cover in the Central India Highlands (CIH). The paper examines the impact of increased forest cover on groundwater infiltration and recharge, which are essential for sustainable Rabi (winter, non-monsoon) season irrigation and agricultural production. Field measurements of saturated hydraulic conductivity (Kfs) linked to hydrological modeling estimate increased forest cover impact on the CIH hydrology. Kfs tests in 118 sites demonstrate a significant land cover effect, with forest cover having a higher Kfs of 20.2 mm hr−1 than croplands (6.7mm hr−1). The spatial processes in hydrology (SPHY) model simulated forest cover from 2% to 75% and showed that each basin reacts differently, depending on the amount of agriculture under paddy. Paddy agriculture can compensate for low infiltration through increased depression storage, allowing for continuous infiltration and groundwater recharge. Expanding forest cover to 33% in the CIH would reduce groundwater recharge by 7.94 mm (−1%) when converting the average cropland and increase it by 15.38 mm (3%) if reforestation is conducted on non-paddy agriculture. Intermediate forest cover shows however shows potential for increase in net benefits.


Sign in / Sign up

Export Citation Format

Share Document