scholarly journals Nutritional Contributions and Health Associations of Traditional Fermented Foods

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 289
Author(s):  
Berenice Negrete-Romero ◽  
Claudia Valencia-Olivares ◽  
Gloria Andrea Baños-Dossetti ◽  
Beatriz Pérez-Armendáriz ◽  
Gabriel Abraham Cardoso-Ugarte

The growing interest in the consumption and study of traditionally fermented food worldwide has led to the development of numerous scientific investigations that have focused on analyzing the microbial and nutritional composition and the health effects derived from the consumption of these foods. Traditionally fermented foods and beverages are a significant source of nutrients, including proteins, essential fatty acids, soluble fiber, minerals, vitamins, and some essential amino acids. Additionally, fermented foods have been considered functional due to their prebiotic content, and the presence of specific lactic acid bacterial strains (LAB), which have shown positive effects on the balance of the intestinal microbiota, providing a beneficial impact in the treatment of diseases. This review presents a bibliographic compilation of scientific studies assessing the effect of the nutritional content and LAB profile of traditional fermented foods on different conditions such as obesity, diabetes, and gastrointestinal disorders.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Adrienn Gréta Tóth ◽  
István Csabai ◽  
Gergely Maróti ◽  
Ákos Jerzsele ◽  
Attila Dubecz ◽  
...  

AbstractAntimicrobial resistance (AMR) is a global threat gaining more and more practical significance every year. The main determinants of AMR are the antimicrobial resistance genes (ARGs). Since bacteria can share genetic components via horizontal gene transfer, even non-pathogenic bacteria may provide ARG to any pathogens which they become physically close to (e.g. in the human gut). In addition, fermented food naturally contains bacteria in high amounts. In this study, we examined the diversity of ARG content in various kefir and yoghurt samples (products, grains, bacterial strains) using a unified metagenomic approach. We found numerous ARGs of commonly used fermenting bacteria. Even with the strictest filter restrictions, we identified ARGs undermining the efficacy of aminocoumarins, aminoglycosides, carbapenems, cephalosporins, cephamycins, diaminopyrimidines, elfamycins, fluoroquinolones, fosfomycins, glycylcyclines, lincosamides, macrolides, monobactams, nitrofurans, nitroimidazoles, penams, penems, peptides, phenicols, rifamycins, tetracyclines and triclosan. In the case of gene lmrD, we detected genetic environment providing mobility of this ARG. Our findings support the theory that during the fermentation process, the ARG content of foods can grow due to bacterial multiplication. The results presented suggest that the starting culture strains of fermented foods should be monitored and selected in order to decrease the intake of ARGs via foods.



2010 ◽  
Author(s):  
◽  
Vinodh Aroon Edward

Cassava, (Manihot esculenta Crantz), is used for the production of a variety of West African foods and ranks fourth in the list of major crops in developing countries after rice, wheat and maize. Gari is one of the most popular foods produced from cassava. Cassava may contain high levels of linamarin, a cyanogenic glucoside, which in its natural state is toxic to man. Therefore, some processing methods that can enhance the detoxification of cassava and lead to the improvement of the quality and hygienic safety of the food are vitally important for less toxic products to be obtained. Quality, safety and acceptability of traditional fermented foods may be improved through the use of starter cultures. There has been a trend recently to isolate wild-type strains from traditional products for use as starter cultures in food fermentation. A total of 74 bacterial strains and 21 yeast strains were isolated from a cassava mash fermentation process in a rural village in Benin, West Africa. These strains were assessed, together with 26 strains isolated at the CSIR from cassava samples sent from Benin previously, for phenotypic and technological properties. Twenty four presumptive lactic acid bacteria (LAB) were selected for further phenotypic, genotypic and technological characterization during a research visit to the BFE (now Max Rubner Institute of Nutrition and Food). After assessment, the strains VE 20, VE 36, VE 65b, VE 77 and VE 82 were chosen for further study as starter cultures. These L. plantarum strains were chosen on the basis of predominance and possession of suitable technological properties. The investigation of this study was complemented by further, similar studies on further Gari isolates in Germany by the BFE. That study was done independently from this study, but both studies served to select potential starter cultures for cassava fermentation for the production of Gari, as this was the common goal of the project. Thus, a wider final selection of potential starter cultures was decided on at the project level and this selection was further tested in fermentation experiments. A total of 17 strains were grown in optimized media in 2 L fermenters. These strains were freeze-dried and thereafter tested in lab-scale cassava mash fermentation trials. xiii The strains performed well in the small scale bucket fermentations. There was a rapid acidification evidenced by the increase in titratable acidity, ranging from 1.1 to 1.3 % at 24 hours, and 1.3 to 1.6 % at 48 hours. The effect of the starter was obvious in that it lowered the pH much faster and to lower levels than the control. It appeared that both the processing and starter culture addition played a role in the removal of cyanide during processing of the cassava into Gari. This was evident from the lower cyanide values obtained for fermentations that included starter cultures. The study also showed that especially the L. plantarum group strains could be produced as starter cultures at lower costs than compared to L. fermentum, W. paramesenteroides or L. mesenteroides strains. Overall the results of this study were crucial for the project in showing that a starter culture which is easy and economical to produce and which has the desired attributes is a feasible possibility for application in the field.



1999 ◽  
Vol 65 (12) ◽  
pp. 5464-5473 ◽  
Author(s):  
Frédéric Ampe ◽  
Nabil ben Omar ◽  
Claire Moizan ◽  
Carmen Wacher ◽  
Jean-Pierre Guyot

ABSTRACT The distribution of microorganisms in pozol balls, a fermented maize dough, was investigated by a polyphasic approach in which we used both culture-dependent and culture-independent methods, including microbial enumeration, fermentation product analysis, quantification of microbial taxa with 16S rRNA-targeted oligonucleotide probes, determination of microbial fingerprints by denaturing gradient gel electrophoresis (DGGE), and 16S ribosomal DNA gene sequencing. Our results demonstrate that DGGE fingerprinting and rRNA quantification should allow workers to precisely and rapidly characterize the microbial assemblage in a spontaneous lactic acid fermented food. Lactic acid bacteria (LAB) accounted for 90 to 97% of the total active microflora; no streptococci were isolated, although members of the genus Streptococcus accounted for 25 to 50% of the microflora. Lactobacillus plantarum and Lactobacillus fermentum, together with members of the generaLeuconostoc and Weissella, were the other dominant organisms. The overall activity was more important at the periphery of a ball, where eucaryotes, enterobacteria, and bacterial exopolysacharide producers developed. Our results also showed that the metabolism of heterofermentative LAB was influenced in situ by the distribution of the LAB in the pozol ball, whereas homolactic fermentation was controlled primarily by sugar limitation. We propose that starch is first degraded by amylases from LAB and that the resulting sugars, together with the lactate produced, allow a secondary flora to develop in the presence of oxygen. Our results strongly suggest that cultivation-independent methods should be used to study traditional fermented foods.



2020 ◽  
Vol 74 (5) ◽  
pp. 391-397
Author(s):  
Janine Anderegg ◽  
Florentin Constancias ◽  
Leo Meile

Tyramine is a health-adverse biogenic amine, which can accumulate in fermented foods like cheese by decarboxylation of the free amino acid tyrosine by either starter cultures or resident microbes such as lactic acid bacteria including Enterococcus spp., respectively. Our study aimed to show the effect of sodium chloride concentrations on tyramine production as well as to characterise bacterial strains as anti-tyramine biocontrol agents in a 2 mL micro-cheese fermentation model. The effect of sodium chloride on tyramine production was assayed with tyramine producing strains from eight different species or subspecies. Generally, an increase in sodium chloride concentration enhanced tyramine production, e.g. from 0% to 1.5% of sodium chloride resulted in an increase of tyramine of 870% with a Staphylococcus xylosus strain. In the biocontrol screening among lactic acid bacteria, a Lactobacillus plantarum JA-1199 strain was screened that could consume in successful competition with other resident bacteria tyrosine in the micro-cheese model as a source of energy gain. Thereby tyramine accumulation was reduced between 4% to 99%. The results of this study disclose a feasible strategy for decreasing tyramine concentration and increasing the safety level of fermented food. It is an example of development and application of bacterial isolates as starter or protective cultures in food, a biocontrol topic, which Oreste Ghisalba – in his project evaluation function of SNF and later on CTI – was promoting with great emphasis in our ETH Food Biotechnology research group.



Food Security ◽  
2021 ◽  
Author(s):  
Valentina C Materia ◽  
Anita R Linnemann ◽  
Eddy J Smid ◽  
Sijmen E Schoustra

AbstractTo date, many efforts to eradicate hunger include increasing agricultural production, processing of raw materials and supplementation, and fortification of foods. Locally produced foods represent a significant part of Food Systems as they contribute to tackling hunger and malnutrition. However, few studies have investigated the processing of traditional fermented foods at household level as a means to improve nutrition and triggering inclusive entrepreneurship, two crucial dimensions Food Systems build on. Fermentation is an ancient processing technique that relies on transformation of raw materials by microbial activity and is mainly undertaken by women. This paper posits that upscaling small scale fermented food processing activities while enhancing functional food properties and fostering women entrepreneurship contributes to prevention of food losses, promotion of nutrition and health, and entrepreneurial opportunities for current processors. This is key for effective policy interventions to foster food security in challenging contexts.⨪.



2018 ◽  
Vol 86 (3) ◽  
pp. 37 ◽  
Author(s):  
Bhagavathi Sivamaruthi ◽  
Periyanaina Kesika ◽  
Chaiyavat Chaiyasut

Fermented foods are known for several health benefits, and they are generally used among the Asian people. Microorganisms involved in the fermentation process are most responsible for the final quality of the food. Traditional fermented (spontaneous fermentation) foods are a versatile source of bioactive molecules and bioactive microbes. Several reports are available regarding the isolation and characterization of potent strains from traditional fermented foods. A collection of information for easy literature analysis of bioactive microbes derived from Thai fermented food is not yet available. The current manuscript compiled information on bioactive (antimicrobial- and enzyme-producing probiotic) microbes isolated from naturally fermented Thai foods.



Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1805
Author(s):  
Hye Jin Choi ◽  
Donghyun Shin ◽  
Minhye Shin ◽  
Bohyun Yun ◽  
Minkyoung Kang ◽  
...  

Many fermented foods are known to have beneficial effects on human and animal health, offering anti-aging and immunomodulatory benefits to host. Microorganisms contained in the fermented foods are known to provide metabolic products possibly improving host health. However, despite of a number of studies on the functional effects of the fermented foods, isolation and identification of the effective bacterial strains in the products are still in progress. The objective of this study was to isolate candidate functional strains in various Korean traditional fermented foods, including ganjang, gochujang, doenjang, and jeotgal, and evaluate their beneficial effects on the host, using Caenorhabditis elegans as a surrogate animal model. Among the 30 strains isolated, five Bacillus spp. were selected that increased the expression level of pmk-1, an innate immune gene of C. elegans. These strains extended the nematode lifespan and showed intestinal adhesion to the host. Based on the bioinformatic analyses of whole genome sequences and pangenomes, the five strains of Bacillus subtilis were genetically different from the strains found in East Asian countries and previously reported strains isolated from Korean fermented foods. Our findings suggest that the newly isolated B. subtilis strains can be a good candidate for probiotic with further in-depth investigation on health benefits and safety.



Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1035
Author(s):  
Wiktoria Liszkowska ◽  
Joanna Berlowska

Yeast plays a key role in the production of fermented foods and beverages, such as bread, wine, and other alcoholic beverages. They are able to produce and release from the fermentation environment large numbers of volatile organic compounds (VOCs). This is the reason for the great interest in the possibility of adapting these microorganisms to fermentation at reduced temperatures. By doing this, it would be possible to obtain better sensory profiles of the final products. It can reduce the addition of artificial flavors and enhancements to food products and influence other important factors of fermented food production. Here, we reviewed the genetic and physiological mechanisms by which yeasts adapt to low temperatures. Next, we discussed the importance of VOCs for the food industry, their biosynthesis, and the most common volatiles in fermented foods and described the beneficial impact of decreased temperature as a factor that contributes to improving the composition of the sensory profiles of fermented foods.



2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2485-2490 ◽  
Author(s):  
Mika Miyashita ◽  
Pattaraporn Yukphan ◽  
Winai Chaipitakchonlatarn ◽  
Taweesak Malimas ◽  
Masako Sugimoto ◽  
...  

Three Lactobacillus-like strains, NB53T, NB446T and NB702, were isolated from traditional fermented food in Thailand. Comparative 16S rRNA gene sequence analysis indicated that these strains belong to the Lactobacillus plantarum group. Phylogenetic analysis based on the dnaK, rpoA, pheS and recA gene sequences indicated that these three strains were distantly related to known species present in the L. plantarum group. DNA–DNA hybridization with closely related strains demonstrated that these strains represented two novel species; the novel strains could be differentiated based on chemotaxonomic and phenotypic characteristics. Therefore, two novel species of the genus Lactobacillus, Lactobacillus plajomi sp. nov. (NB53T) and Lactobacillus modestisalitolerans sp. nov. (NB446T and NB702), are proposed with the type strains NB53T ( = NBRC 107333T = BCC 38054T) and NB446T ( = NBRC 107235T = BCC 38191T), respectively.



Author(s):  
Şule Aktaç ◽  
Simay Kundakçı ◽  
Fatma Esra Güneş

Background: Traditional fermented foods (TFF), which display positive effects on health, constitute a part of the traditions of a region and have continuity over many years. Familiarity with a product and the naturalness of food are positively associated with general attitudes toward traditional food consumption. Aims: To determine university students’ awareness and consumption of TFF and related factors in Turkey. Subjects and Methods: In this descriptive cross-sectional study, the faculties of Marmara University were stratified between January and June 2019, and a questionnaire on TFF consumption and related knowledge and attitudes was administered to 1,233 volunteer students selected using the random sampling method. The normality of data distribution was checked with the Kolmogorov-Smirnov test, and the data were analyzed with the chi-square test. Results: The students were familiar with the majority of TFF, with the most common being yoghurt (91.8%) and cheese (88.7%), while hardaliye (27.1%) and olives (27.1%) were less known TFF products. The majority of the students (60.7-99.2%) consumed cheese, yoghurt, pickled olives, pickle, soudjouk, tarhana, vinegar, and butter. The TFF were habitually consumed as industrial products, except tarhana, pickle, and yoghurt. It was also determined that the TFF consumption did not change according to the season in 76.4% of the students, and it was affected by the consumption of parents, whether they lived with their family or alone (p < 0.05). Conclusions: The students showed high awareness of TTF consumption, which was influenced by parent’s consumption and lifestyles. To ensure the continuity of TFF consumption, positive attitudes and behaviors must be maintained. Keywords: Consumption, familiarity, fermented foods, industrial products, Turkey.



Sign in / Sign up

Export Citation Format

Share Document