scholarly journals What Do the Australian Black Summer Fires Signify for the Global Fire Crisis?

Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 97
Author(s):  
Rachael H. Nolan ◽  
David M. J. S. Bowman ◽  
Hamish Clarke ◽  
Katharine Haynes ◽  
Mark K. J. Ooi ◽  
...  

The 2019–20 Australian fire season was heralded as emblematic of the catastrophic harm wrought by climate change. Similarly extreme wildfire seasons have occurred across the globe in recent years. Here, we apply a pyrogeographic lens to the recent Australian fires to examine the range of causes, impacts and responses. We find that the extensive area burnt was due to extreme climatic circumstances. However, antecedent hazard reduction burns (prescribed burns with the aim of reducing fuel loads) were effective in reducing fire severity and house loss, but their effectiveness declined under extreme weather conditions. Impacts were disproportionately borne by socially disadvantaged regional communities. Urban populations were also impacted through prolonged smoke exposure. The fires produced large carbon emissions, burnt fire-sensitive ecosystems and exposed large areas to the risk of biodiversity decline by being too frequently burnt in the future. We argue that the rate of change in fire risk delivered by climate change is outstripping the capacity of our ecological and social systems to adapt. A multi-lateral approach is required to mitigate future fire risk, with an emphasis on reducing the vulnerability of people through a reinvigoration of community-level capacity for targeted actions to complement mainstream fire management capacity.

2009 ◽  
Vol 39 (12) ◽  
pp. 2369-2380 ◽  
Author(s):  
Héloïse Le Goff ◽  
Mike D. Flannigan ◽  
Yves Bergeron

The main objective of this paper is to evaluate whether future climate change would trigger an increase in the fire activity of the Waswanipi area, central Quebec. First, we used regression analyses to model the historical (1973–2002) link between weather conditions and fire activity. Then, we calculated Fire Weather Index system components using 1961–2100 daily weather variables from the Canadian Regional Climate Model for the A2 climate change scenario. We tested linear trends in 1961–2100 fire activity and calculated rates of change in fire activity between 1975–2005, 2030–2060, and 2070–2100. Our results suggest that the August fire risk would double (+110%) for 2100, while the May fire risk would slightly decrease (–20%), moving the fire season peak later in the season. Future climate change would trigger weather conditions more favourable to forest fires and a slight increase in regional fire activity (+7%). While considering this long-term increase, interannual variations of fire activity remain a major challenge for the development of sustainable forest management.


2021 ◽  
Vol 13 (12) ◽  
pp. 2386
Author(s):  
Aqil Tariq ◽  
Hong Shu ◽  
Qingting Li ◽  
Orhan Altan ◽  
Mobushir Riaz Khan ◽  
...  

Prescribed burning is a common strategy for minimizing forest fire risk. Fire is introduced under specific environmental conditions, with explicit duration, intensity, and rate of spread. Such conditions deviate from those encountered during the fire season. Prescribed burns mostly affect surface fuels and understory vegetation, an outcome markedly different when compared to wildfires. Data on prescribed burning are crucial for evaluating whether land management targets have been reached. This research developed a methodology to quantify the effects of prescribed burns using multi-temporal Sentinel-1 Synthetic Aperture Radar (SAR) imagery in the forests of southeastern Australia. C-band SAR datasets were specifically used to statistically explore changes in radar backscatter coefficients with the intensity of prescribed burns. Two modeling approaches based on pre- and post-fire ratios were applied for evaluating prescribed burn impacts. The effects of prescribed burns were documented with an overall accuracy of 82.3% using cross-polarized backscatter (VH) SAR data under dry conditions. The VV polarization indicated some potential to detect burned areas under wet conditions. The findings in this study indicate that the C-band SAR backscatter coefficient has the potential to evaluate the effectiveness of prescribed burns due to its sensitivity to changes in vegetation structure.


2014 ◽  
Vol 23 (4) ◽  
pp. 490 ◽  
Author(s):  
Aurélie Terrier ◽  
William J. de Groot ◽  
Martin P. Girardin ◽  
Yves Bergeron

High moisture levels and low frequency of wildfires have contributed to the accumulation of the organic layer in open black spruce (Picea mariana)–Sphagnum dominated stands of eastern boreal North America. The anticipated increase in drought frequency with climate change could lead to moisture losses and a transfer of the stored carbon back into the atmosphere due to increased fire disturbance and decomposition. Here we studied the dynamics of soil moisture content and weather conditions in spruce–feather moss and spruce–Sphagnum dominated stands of the boreal Clay Belt of eastern Canada during particularly dry conditions. A linear mixed model was developed to predict the moisture content of the organic material according to weather, depth and site conditions. This model was then used to calculate potential depth of burn and applied to climate model projections to determine the sensitivity of depth of burn to future fire hazards. Our results suggest that depth of burn varies only slightly in response to changes in weather conditions in spruce–Sphagnum stands. The reverse holds true in spruce–feather moss stands. In conclusion, our results suggest that spruce–Sphagnum stands in the boreal Clay Belt may be resistant to an increase in the depth of burn risk under climate change.


2015 ◽  
Vol 24 (5) ◽  
pp. 607 ◽  
Author(s):  
Paul R. Williams ◽  
Eleanor M. Collins ◽  
Mick Blackman ◽  
Clare Blackman ◽  
Jackie McLeod ◽  
...  

Unplanned, unmanaged wildfires are a significant threat to people, infrastructure and ecosystems around the world. Managed, planned burning is widely used for reducing the incidence, extent or intensity of wildfires. Fire weather and the season of burning are recognised as crucial factors influencing fire behaviour but the demonstrated influence of ignition technique on fire behaviour is not as prominently discussed in relation to planned fires. We found wildfires, irrespective of season, burnt the ground layer more completely (i.e. were less patchy) and produced greater crown scorch severity than did planned fires in a spinifex (Triodia spp.)-dominated open woodland. Fires ignited with a 50-m line burning with the wind produced significantly higher intensities than did line ignition against the wind, and spot ignitions with or against the wind. These data suggest that the higher severity of wildfires in spinifex-dominated habitats is strongly influenced by long fire fronts, in addition to fire season and weather conditions. This study supports the value of planned burning for reducing fire severity and highlights the value of spot ignitions in ecological burning to create a patchily burnt landscape, with limited canopy severity.


Author(s):  
Jennifer Fay

Much of Buster Keaton’s slapstick comedy revolves around his elaborate outdoor sets and the crafty weather design that destroys them. In contrast to D. W. Griffith, who insisted on filming in naturally occurring weather, and the Hollywood norm of fabricating weather in the controlled space of the studio, Keaton opted to simulate weather on location. His elaborately choreographed gags with their storm surges and collapsing buildings required precise control of manufactured rain and wind, along with detailed knowledge of the weather conditions and climatological norms on site. Steamboat Bill, Jr. (1928) is one of many examples of Keaton’s weather design in which characters find themselves victims of elements that are clearly produced by the off-screen director. Keaton’s weather design finds parallels in World War I strategies of creating microclimates of death (using poison gas) as theorized by Peter Sloterdijk.


2021 ◽  
Vol 11 (9) ◽  
pp. 3972
Author(s):  
Azin Velashjerdi Farahani ◽  
Juha Jokisalo ◽  
Natalia Korhonen ◽  
Kirsti Jylhä ◽  
Kimmo Ruosteenoja ◽  
...  

The global average air temperature is increasing as a manifestation of climate change and more intense and frequent heatwaves are expected to be associated with this rise worldwide, including northern Europe. Summertime indoor conditions in residential buildings and the health of occupants are influenced by climate change, particularly if no mechanical cooling is used. The energy use of buildings contributes to climate change through greenhouse gas emissions. It is, therefore, necessary to analyze the effects of climate change on the overheating risk and energy demand of residential buildings and to assess the efficiency of various measures to alleviate the overheating. In this study, simulations of dynamic energy and indoor conditions in a new and an old apartment building are performed using two climate scenarios for southern Finland, one for average and the other for extreme weather conditions in 2050. The evaluated measures against overheating included orientations, blinds, site shading, window properties, openable windows, the split cooling unit, and the ventilation cooling and ventilation boost. In both buildings, the overheating risk is high in the current and projected future average climate and, in particular, during exceptionally hot summers. The indoor conditions are occasionally even injurious for the health of occupants. The openable windows and ventilation cooling with ventilation boost were effective in improving the indoor conditions, during both current and future average and extreme weather conditions. However, the split cooling unit installed in the living room was the only studied solution able to completely prevent overheating in all the spaces with a fairly small amount of extra energy usage.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
L Kuzma ◽  
A Kurasz ◽  
M Niwinska ◽  
EJ Dabrowski ◽  
M Swieczkowski ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background Acute coronary syndromes (ACS) are the leading cause of death all over the world, in the last years chronobiology of their occurrence has been changing. Purpose The aim of this study was to assess the influence of climate change on hospital admissions due to ACS. Methods Medical records of 10,529 patients hospitalized for ACS in 2008–2017 were examined. Weather conditions data were obtained from the Institute of Meteorology. Results Among the patients, 3537 (33.6%) were hospitalized for STEMI, 3947 (37.5%) for NSTEMI, and 3045 (28.9%) for UA. The highest seasonal mean for ACS was recorded in spring (N = 2782, mean = 2.52, SD = 1.7; OR 1.07; 95% CI 1.0-1.2; P = 0.049) and it was a season with the highest temperature changes day to day (Δ temp.=11.7). On the other hand, every 10ºC change in temperature was associated with an increased admission due to ACS by 13% (RR 1.13; 95% CI 1.04-1.3; P = 0.008). Analysis of weekly changes showed that the highest frequency of ACS occurred on Thursday (N = 1703, mean = 2.7, SD = 1.9; OR 1.16; 95% CI 1.0-1.23; P = 0.004), in STEMI subgroup it was Monday (N = 592, mean = 0.9, SD = 1.6, OR 1.2; 95% CI 1.1-1.4; P = 0.002). Sunday was associated with decreased admissions due to all types of ACS (N = 1098, mean = 1.7, SD = 1.4; OR 0.69; 95% CI 0.6-0.8, P < 0.001). In the second half of the study period (2013-2018) the relative risks of hospital admissions due to ACS were 1.043 (95%CI: 1.009-1.079, P = 0.014, lag 0) and 0.957 (95%CI: 0.925-0.990, P = 0.010, lag 1) for each 10ºC decrease in temperature; 1.049 (95% CI: 1.015-1.084, P = 0.004, lag 0) and 1.045 (95%CI: 1.011-1.080, P = 0.008, lag 1) for each 10 hPa decrease in atmospheric pressure and 1.180 (95% CI: 1.078-1.324, P = 0.007, lag 0) for every 10ºC change in temperature. For the first half of the study the risk was significantly lower. Conclusion We observed a shift in the seasonal peak of ACS occurrence from winter to spring which may be related to temperature fluctuation associated with climate change in this season. The lowest frequency of ACS took place on weekends. Atmospheric changes had a much more pronounced effect on admissions due to ACS in the second half of the analyzed period, which is in line with the dynamics of global climate change.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Megan M. Friggens ◽  
Rachel A. Loehman ◽  
Connie I. Constan ◽  
Rebekah R. Kneifel

Abstract Background Wildfires of uncharacteristic severity, a consequence of climate changes and accumulated fuels, can cause amplified or novel impacts to archaeological resources. The archaeological record includes physical features associated with human activity; these exist within ecological landscapes and provide a unique long-term perspective on human–environment interactions. The potential for fire-caused damage to archaeological materials is of major concern because these resources are irreplaceable and non-renewable, have social or religious significance for living peoples, and are protected by an extensive body of legislation. Although previous studies have modeled ecological burn severity as a function of environmental setting and climate, the fidelity of these variables as predictors of archaeological fire effects has not been evaluated. This study, focused on prehistoric archaeological sites in a fire-prone and archaeologically rich landscape in the Jemez Mountains of New Mexico, USA, identified the environmental and climate variables that best predict observed fire severity and fire effects to archaeological features and artifacts. Results Machine learning models (Random Forest) indicate that topography and variables related to pre-fire weather and fuel condition are important predictors of fire effects and severity at archaeological sites. Fire effects were more likely to be present when fire-season weather was warmer and drier than average and within sites located in sloped, treed settings. Topographic predictors were highly important for distinguishing unburned, moderate, and high site burn severity as classified in post-fire archaeological assessments. High-severity impacts were more likely at archaeological sites with southern orientation or on warmer, steeper, slopes with less accumulated surface moisture, likely associated with lower fuel moistures and high potential for spreading fire. Conclusions Models for predicting where and when fires may negatively affect the archaeological record can be used to prioritize fuel treatments, inform fire management plans, and guide post-fire rehabilitation efforts, thus aiding in cultural resource preservation.


2021 ◽  
Vol 13 (15) ◽  
pp. 8170
Author(s):  
Veronica Sanda Chedea ◽  
Ana-Maria Drăgulinescu  ◽  
Liliana Lucia Tomoiagă  ◽  
Cristina Bălăceanu ◽  
Maria Lucia Iliescu 

Known for its dry and semi-dry white wine, the Târnave vineyard located in central Transylvania is challenged by the current climate change, which has resulted in an increase of the period of active vegetation by approximately 15–20 days, the average annual temperature by 1–1.5 °C and also the amount of useful temperatures (useful thermal balance for the grapevine). Furthermore, the frost periods have been reduced. Transylvania is an important Romanian region for grapevine cultivation. In this context, one can use the climatic changes to expand their wine assortment by cultivating an autochthonous grapevine variety called Amurg. Amurg is a red grape cultivar homologated at SCDVV Blaj, which also homologated 7 cultivars and 11 clones. Because viticulture depends on the stability of meteorological and hydrological parameters of the growing area, its foundations are challenged by climate change. Grapevine production is a long time investment, taking at least five years before the freshly planted vines produce the desired quality berries. We propose the implementation of a climate change-based precision viticulture turn-key solution for environmental monitoring in the Târnave vineyard. This solution aims to evaluate the grapevine’s micro-climate to extend the sustainable cultivation of the Amurg red grapes cultivar in Transylvania with the final goal of obtaining Protected Designation of Origin (PDO) rosé and red wines from this region. Worldwide, the changing conditions from the existing climate (a 30-year average), used in the past hundred years to dictate local standards, such as new and erratic trends of temperature and humidity regimes, late spring freezes, early fall frosts, storms, heatwaves, droughts, area wildfires, and insect infestations, would create dynamic problems for all farmers to thrive. These conditions will make it challenging to predict shifts in each of the components of seasonal weather conditions. Our proposed system also aims to give a solution that can be adapted to other vineyards as well.


2021 ◽  
pp. 1-13
Author(s):  
Fernanda Dalla Libera Damacena

The article examines to what extent the adverse effects of climate change can be considered triggering factors of public insecurity. Against this background, it explores the growing environmental conflicts involving water resources in Brazil, including the Amazon region. In addition to the introduction and conclusion, the paper is structured around three topics. The first one outlines how the concept of public security has evolved to the present state, in which climate change is taken into account. Next, climate change is discussed as a factor that magnifies vulnerabilities, an argument supported by a discussion of historical events. The third topic highlights the main threats, vulnerabilities and conflicts involving water resources in Brazil, taking a scientific view of systemic risks and precaution. Finally, we propose rethinking the concept of public security in Brazil from a perspective of parameters involving regulations, principles and state initiative. The article suggests that the immediate and future effects of climate change do have a profound impact on social systems and on the environment, and may be a triggering factor of public insecurity. If institutions and governments do not address existing effects, and invest in adaptations to meet future scientific forecasts on climate change, social stability and the development of a culture of peace will be less likely in Brazil. A fundamental step in this process is the reformulation of the conventional concept of public security in the Brazilian legislation, in order to expressly incorporate the variable of climate security among its stated objectives. In addition, we point out a set of actions and principles with the potentital to promote not only adaptation and resilience, but also contribute to building peace. In terms of methodology, the study is descriptive, exploratory, legislative, bibliographical and documentary.


Sign in / Sign up

Export Citation Format

Share Document