scholarly journals Acoustic Streaming and Its Applications

Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 108 ◽  
Author(s):  
Junru Wu

Broadly speaking, acoustic streaming is generated by a nonlinear acoustic wave with a finite amplitude propagating in a viscid fluid. The fluid volume elements of molecules, d V , are forced to oscillate at the same frequency as the incident acoustic wave. Due to the nature of the nonlinearity of the acoustic wave, the second-order effect of the wave propagation produces a time-independent flow velocity (DC flow) in addition to a regular oscillatory motion (AC motion). Consequently, the fluid moves in a certain direction, which depends on the geometry of the system and its boundary conditions, as well as the parameters of the incident acoustic wave. The small scale acoustic streaming in a fluid is called “microstreaming”. When it is associated with acoustic cavitation, which refers to activities of microbubbles in a general sense, it is often called “cavitation microstreaming”. For biomedical applications, microstreaming usually takes place in a boundary layer at proximity of a solid boundary, which could be the membrane of a cell or walls of a container. To satisfy the non-slip boundary condition, the flow motion at a solid boundary should be zero. The magnitude of the DC acoustic streaming velocity, as well as the oscillatory flow velocity near the boundary, drop drastically; consequently, the acoustic streaming velocity generates a DC velocity gradient and the oscillatory flow velocity gradient produces an AC velocity gradient; they both will produce shear stress. The former is a DC shear stress and the latter is AC shear stress. It was observed the DC shear stress plays the dominant role, which may enhance the permeability of molecules passing through the cell membrane. This phenomenon is called “sonoporation”. Sonoporation has shown a great potential for the targeted delivery of DNA, drugs, and macromolecules into a cell. Acoustic streaming has also been used in fluid mixing, boundary cooling, and many other applications. The goal of this work is to give a brief review of the basic mathematical theory for acoustic microstreaming related to the aforementioned applications. The emphasis will be on its applications in biotechnology.

2019 ◽  
Vol 863 ◽  
pp. 572-600 ◽  
Author(s):  
Marco Mazzuoli ◽  
Aman G. Kidanemariam ◽  
Markus Uhlmann

Sea ripples are small-scale bedforms which originate from the interaction of an oscillatory flow with an erodible sand bed. The phenomenon of sea ripple formation is investigated by means of direct numerical simulation in which the sediment bed is represented by a large number of fully resolved spherical grains (i.e. the flow around each individual particle is accounted for). Two sets of parameter values (differing in the amplitude and frequency of fluid oscillations, among other quantities) are adopted which are motivated by laboratory experiments on the formation of laminar rolling-grain ripples. The knowledge of the origin of ripples is presently enriched by insights and by providing fluid- and sediment-related quantities that are difficult to obtain in the laboratory (e.g. particle forces, statistics of particle motion, bed shear stress). In particular, detailed analysis of flow and sediment bed evolution has confirmed that ripple wavelength is determined by the action of steady recirculating cells which tend to accumulate sediment grains into ripple crests. The ripple amplitude is observed to grow exponentially, consistent with established linear stability analysis theories. Particles at the bed surface exhibit two kinds of motion depending on their position with respect to the recirculating cells: particles at ripple crests are significantly faster and show larger excursions than those lying in ripple troughs. In analogy with the segregation phenomenon of polydisperse sediments, the non-uniform distribution of the velocity field promotes the formation of ripples. The wider the gap between the excursion of fast and slow particles, the larger the resulting growth rate of the ripples. Finally, it is revealed that, in the absence of turbulence, the sediment flow rate is driven by both the bed shear stress and the wave-induced pressure gradient, the dominance of each depending on the phase of the oscillation period. In phases of maximum bed shear stress, the sediment flow rate correlates more with the Shields number while the pressure gradient tends to drive sediment bed motion during phases of minimum bed shear stress.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 765
Author(s):  
Qianbin Zhao ◽  
Tim Cole ◽  
Yuxin Zhang ◽  
Shi-Yang Tang

Organ-on-a-chip (OOC) uses the microfluidic 3D cell culture principle to reproduce organ- or tissue-level functionality at a small scale instead of replicating the entire human organ. This provides an alternative to animal models for drug development and environmental toxicology screening. In addition to the biomimetic 3D microarchitecture and cell–cell interactions, it has been demonstrated that mechanical stimuli such as shear stress and mechanical strain significantly influence cell behavior and their response to pharmaceuticals. Microfluidics is capable of precisely manipulating the fluid of a microenvironment within a 3D cell culture platform. As a result, many OOC prototypes leverage microfluidic technology to reproduce the mechanically dynamic microenvironment on-chip and achieve enhanced in vitro functional organ models. Unlike shear stress that can be readily generated and precisely controlled using commercial pumping systems, dynamic systems for generating proper levels of mechanical strains are more complicated, and often require miniaturization and specialized designs. As such, this review proposes to summarize innovative microfluidic OOC platforms utilizing mechanical actuators that induce deflection of cultured cells/tissues for replicating the dynamic microenvironment of human organs.


Author(s):  
Yi Zhang ◽  
Ka Chung Chan ◽  
Sau Chung Fu ◽  
Christopher Yu Hang Chao

Abstract Flutter-driven triboelectric nanogenerator (FTENG) is one of the most promising methods to harvest small-scale wind energy. Wind causes self-fluttering motion of a flag in the FTENG to generate electricity by contact electrification. A lot of studies have been conducted to enhance the energy output by increasing the surface charge density of the flag, but only a few researches tried to increase the converting efficiency by enlarging the flapping motion. In this study, we show that by simply replacing the rigid flagpole in the FTENG with a flexible flagpole, the energy conversion efficiency is augmented and the energy output is enhanced. It is found that when the flag flutters, the flagpole also undergoes aerodynamic force. The lift force generated from the fluttering flag applies a periodic rotational moment on the flagpole, and causes the flagpole to vibrate. The vibration of the flagpole, in turn amplifies the flutter of the flag. Both the fluttering dynamics of the flags with rigid and flexible flagpoles have been recorded by a high-speed camera. When the flag was held by a flexible flagpole, the fluttering amplitude and the contact area between the flag and electrode plates were increased. The energy enhancement increased as the flow velocity increased and the enhancement can be 113 times when the wind velocity is 10 m/s. The thickness of the flagpole was investigated. An optimal output of open-circuit voltage reaching 1128 V (peak-to-peak value) or 312.40 V (RMS value), and short-circuit current reaching 127.67 μA (peak-to-peak value) or 31.99 μA (RMS value) at 12.21 m/s flow velocity was achieved. This research presents a simple design to enhance the output performance of an FTENG by amplifying the fluttering amplitude. Based on the performance obtained in this study, the improved FTENG has the potential to apply in a smart city for driving electronic devices as a power source for IoT applications.


2021 ◽  
Author(s):  
Shigehiro Hashimoto ◽  
Hiroki Yonezawa

Abstract A cell deforms and migrates on the scaffold under mechanical stimuli in vivo. In this study, a cell with division during shear stress stimulation has been observed in vitro. Before and after division, both migration and deformation of each cell were analyzed. To make a Couette-type shear flow, the medium was sandwiched between parallel disks (the lower stationary culture-disc and the upper rotating disk) with a constant gap. The wall shear stress (1.5 Pa < τ < 2 Pa) on the surface of the lower culture plate was controlled by the rotational speed of the upper disc. Myoblasts (C2C12: mouse myoblast cell line) were used in the test. After cultivation without flow for 24 hours for adhesion of the cells to the lower disk, constant τ was applied to the cells in the incubator for 7 days. The behavior of each cell during shear was tracked by time-lapse images observed by an inverted phase contrast microscope placed in the incubator. Experimental results show that each cell tends to divide after higher activities: deformation and migration. The tendency is remarkable at the shear stress of 1.5 Pa.


Author(s):  
Prasanna Hariharan ◽  
Ronald A. Robinson ◽  
Matthew R. Myers ◽  
Rupak K. Banerjee

A new, non-perturbing optical measurement technique was developed to characterize medical ultrasound fields generated by High Intensity Focused Ultrasound (HIFU) transducers using a phenomenon called ‘acoustic streaming’. The acoustic streaming velocity generated by HIFU transducers was measured experimentally using Digital Particle Image Velocimetry (DPIV). The streaming velocity was then calculated numerically using the finite-element method. An optimization algorithm was developed to back-calculate acoustic power and intensity field by minimizing the difference between experimental and numerical streaming velocities. The intensity field and acoustic power calculated using this approach was validated with standard measurement techniques. Results showed that the inverse method was able to predict acoustic power and intensity fields within 10% of the actual value measured using standard techniques, at the low powers where standard methods can be safely applied. This technique is also potentially useful for evaluating medical ultrasound transducers at the higher power levels used in clinical practice.


2020 ◽  
Vol 244 ◽  
pp. 439-447
Author(s):  
Aleksandr Ponomarev ◽  
Aleksandr Yusupov

The object of the study is a section of the gas and gas condensate collection system, consisting of an angle throttle installed on a xmas tree and a well piping located after the angle throttle. The aim of the study is to assess the impact of the flow velocity and wall shear stress (WSS) on the carbon dioxide corrosion rate in the area of interest and to come up with substantiated recommendations for the rational operation of the angle throttle in order to reduce the corrosion intensity. In the course of solving this problem, a technique was developed and subsequently applied to assess the influence of various factors on the rate of carbon dioxide corrosion. The technique is based on a sequence of different modeling methods: modeling the phase states of the extracted product, three-dimensional (solid) modeling of the investigated section, hydrodynamic flow modeling of the extracted product using the finite volume method, etc. The developed technique has broad possibilities for visualization of the obtained results, which allow identifying the sections most susceptible to the effects of carbon dioxide corrosion. The article shows that the average flow velocity and its local values are not the factors by which it is possible to predict the occurrence of carbon dioxide corrosion in the pipeline section after the angle throttle. The paper proves that WSS has prevailing effect on the corrosion intensity in the section after the angle choke. The zones of corrosion localization predicted according to the technique are compared with the real picture of corrosion propagation on the inner surface of the pipe, as a result of which recommendations for the rational operation of the angle throttle are formed.


2013 ◽  
Vol 339 ◽  
pp. 104-108
Author(s):  
Xiang Ting Fu ◽  
Yan Zha ◽  
An Liang Zhang

A method for a droplet transportation by jumping a obstacle on piezoelectric substrate is presented, and a device for the droplet transportation is implemented on a 128° yx-LiNbO3 piezoelectric substrate. An interdigital transducer and a reflector are fabricated on the piezoelectric substrate using microelectric technology. Hydrophobic film is coated on the area free of electrodes and a polydimethylsilicone obstacle is mounted on it. A radio frequency signal amplified by a power amplifier is applied to the interdigital transducer to generate surface acoustic wave. When the surface acoustic wave meets with the droplet on the piezoelectric substrate during transportation, part of acoustic wave enegy is radiated into the droplet, leading to internal acoustic streaming. Once the radio frequency signal with appropriate amplitude is suddenly decreased, part of the droplet will jump the obstacle due to interial force. Red dye solution drops are demonstrated for transportation experiments. Results show that a droplet can be transported from one side to another of the obstacle on piezoelectric substrate by help of surface acoustic wave. The presented method is helpful for microfluidic system on a piezoelectric substrate.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Hamed Avari ◽  
Kem A. Rogers ◽  
Eric Savory

The parallel plate flow chamber (PPFC) has gained popularity due to its applications in fields such as biological tissue engineering. However, most of the studies using PPFC refer to theoretical relations for estimating the wall shear stress (WSS) and, hence, the accuracy of such quantifications remains elusive for anything other than steady laminar flow. In the current study, a laser Doppler velocimetry (LDV) method was used to quantify the flow in a PPFC (H = 1.8 mm × W = 17.5 mm, Dh = 3.26 mm, aspect ratio = 9.72) under steady Re = 990, laminar pulsatile (carotid Re0-mean = 282 as well as a non-zero-mean sinusoidal Re0-mean = 45 pulse) and low-Re turbulent Re = 2750 flow conditions. A mini-LDV probe was applied, and the absolute location of the LDV measuring volume with the respect to the wall was determined using a signal monitoring technique with uncertainties being around ±27 μm. The uniformity of the flow across the span of the channel, as well as the WSS assessment for all the flow conditions, was measured with the uncertainties all being less than 16%. At least two points within the viscous sublayer of the low-Re turbulent flow were measured (with the y+ for the first point < 3) and the WSS was determined using two methods with the differences between the two methods being within 5%. This paper for the first time presents the experimental determination of WSS using LDV in a small-scale PPFC under various flow conditions, the challenges associated with each condition, and a comparison between the cases. The present data will be useful for those conducting biological or numerical modeling studies using such devices.


Sign in / Sign up

Export Citation Format

Share Document