scholarly journals Encapsulation of Berberis vulgaris Anthocyanins into Nanoliposome Composed of Rapeseed Lecithin: A Comprehensive Study on Physicochemical Characteristics and Biocompatibility

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 492
Author(s):  
Mina Homayoonfal ◽  
Seyed Mohammad Mousavi ◽  
Hossein Kiani ◽  
Gholamreza Askari ◽  
Stephane Desobry ◽  
...  

In the present study, nanoliposomes composed of rapeseed lecithin were used for the encapsulation of anthocyanin compounds (AC). The nanoliposomes were prepared using hydration and ultrasound combined method, and the effect of AC concentration (4.5, 6.75, 9% w/w) on the characteristics of nanoliposomes including particle size, polydispersity index (PDI), zeta potential, and the encapsulation efficiency (EE) of nanoliposomes with and without AC were studied. The results suggested the fabricated nanoliposomes had a size range of 141–196 nm, negative zeta potential and narrow particle size distribution. Further, the samples containing 9% extract had the maximum EE (43%). The results showed elevation of AC concentration resulted in increased particle size, PDI, EE, and surface charge of nanoparticles. The presence of AC extract led to diminished membrane fluidity through the hydrophobic interactions with the hydrocarbon chain of fatty acids. TEM images suggested that the nanoliposomes were nearly spherical and the AC caused their improved sphericity. Further, in vitro biocompatibility tests for human mesenchymal (MSC) and fibroblast (FBL) cells indicated nanoparticles were not toxic. Specifically, the best formulations with the maximum compatibility and bioavailability for MSC and FBL cells were AC-loaded nanoliposomes with concentrations of 0.5 mL/mg and 10.3 mL/µg and, respectively.

Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 250 ◽  
Author(s):  
Mohammed Alshraim ◽  
Sibghatullah Sangi ◽  
Gamaleldin Harisa ◽  
Abdullah Alomrani ◽  
Osman Yusuf ◽  
...  

Flexible liposomes (FLs) were developed as promising nano-carriers for anticancer drugs. Coating them with chitosan (CS) could improve their drug delivery properties. The aim of this study was to investigate the physicochemical characteristics, pharmacokinetics behavior, and cytotoxic efficacy of docetaxel (DTX)-loaded CS-coated FLs (C-FLs). DTX-loaded FLs and C-FLs were produced via thin-film evaporation and electrostatic deposition methods, respectively. To explore their physicochemical characterization, the particle size, zeta potential, encapsulation efficiency (EE%), morphology, and DTX release profiles were determined. In addition, pharmacokinetic studies were performed, and cytotoxic effect was assessed using colon cancer cells (HT29). Various FLs, dependent on the type of surfactant, were formed with particle sizes in the nano-range, 137.6 ± 6.3 to 238.2 ± 14.2 nm, and an EE% of 59–94%. Moreover, the zeta potential shifted from a negative to a positive value for C-FL with increased particle size and EE%, and the in vitro sustained-release profiles of C-FL compared to those of FL were evident. The optimized C-FL containing sodium deoxycholate (NDC) and dicetyl phosphate (DP) elicited enhanced pharmacokinetic parameters and cytotoxic efficiency compared to those of the uncoated ones and Onkotaxel®. In conclusion, this approach offers a promising solution for DTX delivery.


Author(s):  
ASHWINI JADHAV ◽  
BINOY VARGHESE CHERIYAN

Objective: The main aim of this study to formulate a nifedipine-loaded nanocarrier for improving solubility and bioavailability. Methods: To improve the solubility of drug, nifedipine-loaded nanocarrier (lipotomes) were prepared by using the film lipid hydration technique. lipotomes were prepared by using tween 80, which is used for increasing solubility and cetyl alcohol for lipophilic environment. Drug excipients interaction determined by FTIR. lipotomes were characterized for particle size, Entrapment efficiency and zeta potential. lipotomes were optimized by using Design-Expert 12 software. Optimized formula further lyophilized by using different cyroproyectant to improve the stability and oral administration of the drug. Results: FTIR shows there was no interaction between formulation ingredients. Mean particle size, entrapment efficiency, zeta potential was determined and found to be 308.1 nm, 96.7%, 20.1mV, respectively. Surface morphology of lipotomes was observed by a scanning electron microscope (SEM). Optimized lipotomes was lyophilized with Mannitol (8% w/v) was the ideal cryoprotectant to retain the physicochemical characteristics of the OLT formulation after lyophilization. Conclusion: Nifedipine loaded nanocarrier was successfully prepared, using film hydration method. Which have good particle size, EE% and zeta potential. After lyophilization no significant changes was observed in particle size with good physical stability, so it could be a good choice for conventional drug delivery system by doing further investigation as in vitro and in vivo study


Author(s):  
Rupali L. Shid ◽  
Shashikant N. Dhole ◽  
Nilesh Kulkarni ◽  
Santosh L Shid

Poor water solubility and slow dissolution rate are issues for the majority of upcoming and existing biologically active compounds. Simvastatin is poorly water-soluble drug and its bioavailability is very low from its crystalline form. The purpose of this study wasto increase the solubility and dissolution rate of simvastatin by the  preparation of nanosuspension by emulsification solvent diffusion method at laboratory scale. Prepared nanosus-pension was evaluated for its particle size and in vitro dissolution study and characterized by zeta potential,differential scanning calorimetry (DSC) and X-Ray diffractometry (XRD), motic digital microscopy, entrapment efficiency, total drug content, saturated solubility study and in vivo study. A 23 factorial design was employed to study the effect of independent variables, amount of SLS (X1), amount of PVPK-30 (X2) and poloxamer-188 (X3) and dependent variables are total drug content and polydispersity Index. The obtained results showed that particle size (nm) and rate of dissolution has been improved when nanosuspension prepared with the higherconcentration of PVPK-30 with the higher concentration of PVP K-30 and Poloxamer-188 and lower concentration of SLS. The particle size and zeta potential of optimized formulation was found to be 258.3 nm and 23.43. The rate of dissolution of the optimized nanosuspension was enhanced (90% in 60min), relative to plain simvastatin  (21% in 60 min), mainly due to the formation of nanosized particles. These results indicate the suitability of 23 factorial  design for preparation of simvastatin loaded nano-suspension significantly improved in vitro dissolution rate and thus possibly enhance fast onset of therapeutic drug effect. In vivo study shows increase in bioavailability in nanosuspension formulation than the plain simvastatin drug.


2020 ◽  
Vol 26 (14) ◽  
pp. 1543-1555 ◽  
Author(s):  
Meltem E. Durgun ◽  
Emine Kahraman ◽  
Sevgi Güngör ◽  
Yıldız Özsoy

Background: Topical therapy is preferred for the management of ocular fungal infections due to its superiorities which include overcoming potential systemic side effects risk of drugs, and targeting of drugs to the site of disease. However, the optimization of effective ocular formulations has always been a major challenge due to restrictions of ocular barriers and physiological conditions. Posaconazole, an antifungal and highly lipophilic agent with broad-spectrum, has been used topically as off-label in the treatment of ocular fungal infections due to its highly lipophilic character. Micellar carriers have the potential to improve the solubility of lipophilic drugs and, overcome ocular barriers. Objective: In the current study, it was aimed optimization of posaconazole loaded micellar formulations to improve aqueous solubility of posaconazole and to characterize the formulations and to investigate the physical stability of these formulations at room temperature (25°C, 60% RH), and accelerated stability (40°C, 75% RH) conditions. Method: Micelles were prepared using a thin-film hydration method. Pre-formulation studies were firstly performed to optimize polymer/surfactant type and to determine their concentration in the formulations. Then, particle size, size distribution, and zeta potential of the micellar formulations were measured by ZetaSizer Nano-ZS. The drug encapsulation efficiency of the micelles was quantified by HPLC. The morphology of the micelles was depicted by AFM. The stability of optimized micelles was evaluated in terms of particle size, size distribution, zeta potential, drug amount and pH for 180 days. In vitro release studies were performed using Franz diffusion cells. Results: Pre-formulation studies indicated that single D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), a combination of it and Pluronic F127/Pluronic F68 are capable of formation of posaconazole loaded micelles at specific concentrations. Optimized micelles with high encapsulation efficiency were less than 20 nm, approximately neutral, stable, and in aspherical shape. Additionally, in vitro release data showed that the release of posaconazole from the micelles was higher than that of suspension. Conclusion: The results revealed that the optimized micellar formulation of posaconazole offers a potential approach for topical ocular administration.


Author(s):  
Gülsel Yurtdaş Kırımlıoğlu ◽  
Sinan Özer ◽  
Gülay Büyükköroğlu ◽  
Yasemin Yazan

Background: Considering the low ocular bioavailability of conventional formulations used for ocular bacterial infection treatment, there’s a need for designing efficient novel drug delivery systems that may enhance of precorneal retention time and corneal permeability. Aim and Objective: The current research focuses on developing nanosized and non-toxic Eudragit® RL 100 and Kollidon® SR nanoparticles loaded with moxifloxacin hydrochloride (MOX) for its prolonged release to be promising for effective ocular delivery. Methods: In this study, MOX was incorporation was carried out by spray drying method aiming ocular delivery. In vitro characteristics were evaluated in detail with different methods. Results: MOX was successfully incorporated into Eudragit® RL 100 and Kollidon® SR polymeric nanoparticles by spray-drying process. Particle size, zeta potential, entrapment efficiency, particle morphology, thermal, FTIR, XRD and NMR analyses and MOX quantification using HPLC method were carried out to evaluate the nanoparticles prepared. MOX loaded nanoparticles demonstrated nanosized and spherical shape while in vitro release studies demonstrated modified release pattern which followed Korsmeyer-Peppas kinetic model. Following successful incorporation of MOX into the nanoparticles, the formulation (MOX: Eudragit® RL 100, 1:5) (ERL-MOX 2) was selected for further studies by the reason of its better characteristics like cationic zeta potential, smaller particle size, narrow size distribution and more uniform prolonged release pattern. Moreover, ERL-MOX 2 formulation remained stable for 3 months and demonstrated higher cell viability values for MOX. Conclusion: In vitro characterization analyses showed that non-toxic, nano-sized and cationic ERLMOX 2 formulation has the potential of enhancing ocular bioavailability.


2019 ◽  
Vol 15 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Surbhi Dhawan ◽  
Sanju Nanda

Background: Since ancient times, people have been using natural resources for photoprotection purposes. One such highly recognised natural agent is pomegranate seed oil, considered as wonder oil owing to the presence of several beneficial phytoconstituents. </P><P> Objective: The study aimed to establish the photoprotective potential of pomegranate seed oil through various in vitro and biochemical studies along with the formation of nanoemulsion, an efficient topical delivery system for the oil. </P><P> Method: Photo-protective potential of the oil was estimated by determining in vitro antioxidant and anti-inflammatory activity, total phenolic content, anti elastase, antihyaluronidase and anticollagenase activities of the oil. Ultrasonication method was used to formulate nanoemulsions. The optimisation was done following the central composite design. The characterisation was done by particle size analysis, zeta potential, polydispersity index, pH, viscosity, stability testing and transmission electron microscopy. The optimised nanoemulsion was loaded into a gel base for topical application and further release studies were carried out. </P><P> Results: The IC50 values of anti-elastase, anti-collagenase and anti-hyaluronidase were found to be 309 mg/ml, 4 mg/ml and 95 mg/ml respectively. The results of anti-oxidant and anti-inflammatory activity were also significant, which thereby established the photo-protective potential of the oil. The optimum batch 2 had particle size 83.90 nm, 0.237 PDI and -5.37 mV zeta potential. The morphology was confirmed by TEM. Batch 2 was incorporated into a gel base and release studies showed 74.12 % release within 7 hours. </P><P> Conclusion: Pomegranate seed oil possesses a potential photo-protective ability. Nanoemulsions proved to be a promising carrier for the topical delivery of the oil.


Author(s):  
Soma Sundaram

AbstractAim and Objectives The present study was carried out to show the potential neuroprotective effects in both invitro and invivo pramipexole dihydrochloride nanosuspension for the treatment in Parkinson’s disease.Materials and Methods: Nanosuspension of pramipexole dihydrochloride was prepared with MPEG-PCL and Pluronic F68 by the process of modified nanoprecipitation technique with different concentrations of MPEG-PCL. The particle size, zeta potential, SEM, TEM and invitro dug release where performed. The cell viability study was performed by using SH-SY5Y cells. Further the formulation is evaluated for its antioxidant potential against rotenone induced neuronal damage in Wister rats such as enzymatic, non enzymatic antioxidants and histopathological evaluation.Result and Discussion: The nanoformulation shows least particle size of 143 nm and maximum zeta potential value 33.4 mv with 88.53% entrapment efficiency were observed with PMPNP 2 formulation. The SEM, TEM and invitro dug release of PMPNP 2 were shows spherical shape with controlled release when compared to other formulations. Further the MTT assay were performed by using SH-SY5Y cells which shows more than 50 % cell viability with 50 µl of PPMNP 2 nanoformulation. Further the antioxidant potential done in rotenone induced neuronal damage in Wister rats. The results showed elevation in the levels of enzymatic and non enzymatic antioxidants compared with neuronal toxic group. Further nanoformulation group showed decrease in levels of LPO which correlates with histopathological architecture.Conclusion: Our study concluded that nanoformulation showed better protective potential in both invitro and invivo compare to free drug for the treatment in Parkinson’s disease.Keywords: Pramipexoledihydrochloride; MPEG-PCL; SH-SY5Y cells; Nanoprecipitation; Parkinson’s disease.


Author(s):  
Suriyakala Perumal Chandran ◽  
Kannikaparameswari Nachimuthu

Objective: Colorectal cancer is one of the most commonly diagnosed cancer and also most common gastrointestinal malignancy with high prevalence rate in the younger population. Usually, cancer cells are surrounded by a fibrin coat which is resistant to fibrinolytic degradation. This fibrin coat is act as self-protective against natural killing mechanism. The main objective was to prepare papain-loaded solid lipid nanoparticles (P-SLN) by melt dispersion-ultrasonication method and investigated the cytotoxic efficacy against colorectal adenocarcinoma (human colorectal adenocarcinoma [HCT 15]) cells.Methods: Optimized polymer ratio was characterized by differential scanning calorimetry, Fourier-transform infrared, X-ray diffraction, scanning electron microscopy, entrapment efficiency, particle size and zeta potential analysis, in vitro drug release, and in vitro cytotoxicity studies on HCT-15 colorectal adenocarcinoma cells.Results: The results showed that the particle size, morphological character and zeta potential value of optimized batch P-SLN were 265 nm, spherical and −26.5 Mv, respectively. The in vitro drug profile of P-SLN exhibited that it produced sustain drug release, and the cell viability of HCT-15 against P-SLN shown better efficacy than pure papain enzyme.Conclusion: P-SLNs were successfully prepared and investigated the in vitro drug release and in vitro cell viability against HCT-15 cell line.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 129
Author(s):  
Hassan Shah ◽  
Asadullah Madni ◽  
Muhammad Muzamil Khan ◽  
Fiaz-ud-Din Ahmad ◽  
Nasrullah Jan ◽  
...  

The current study aimed to develop pH-responsive cisplatin-loaded liposomes (CDDP@PLs) via the thin film hydration method. Formulations with varied ratios of dioleoyl phosphatidylethanolamine (DOPE) to cholesteryl hemisuccinate (CHEMS) were investigated to obtain the optimal particle size, zeta potential, entrapment efficiency, in vitro release profile, and stability. The particle size of the CDDP@PLs was in the range of 153.2 ± 3.08–206.4 ± 2.26 nm, zeta potential was −17.8 ± 1.26 to −24.6 ± 1.72, and PDI displayed an acceptable size distribution. Transmission electron microscopy revealed a spherical shape with ~200 nm size. Fourier transform infrared spectroscopic analysis showed the physicochemical stability of CDDP@PLs, and differential scanning calorimetry analysis showed the loss of the crystalline nature of cisplatin in liposomes. In vitro release study of CDDP@PLs at pH 7.4 depicted the lower release rate of cisplatin (less than 40%), and at a pH of 6.5, an almost 65% release rate was achieved compared to the release rate at pH 5.5 (more than 80%) showing the tumor-specific drug release. The cytotoxicity study showed the improved cytotoxicity of CDDP@PLs compared to cisplatin solution in MDA-MB-231 and SK-OV-3 cell lines, and fluorescence microscopy also showed enhanced cellular internalization. The acute toxicity study showed the safety and biocompatibility of the developed carrier system for the potential delivery of chemotherapeutic agents. These studies suggest that CDDP@PLs could be utilized as an efficient delivery system for the enhancement of therapeutic efficacy and to minimize the side effects of chemotherapy by releasing cisplatin at the tumor site.


Author(s):  
B. B. Khaidarov ◽  
D. S. Suvorov ◽  
D. V. Lysov ◽  
A. K. Abramov ◽  
G. G. Luchnikova ◽  
...  

A method for obtaining a finely dispersed fraction of ground blast-furnace granulated slag has been developed. The resulting material with the introduction of an alkaline additive can be offered as an alternative to foreign analogous fine-dispersed mineral binders, an example of which can be microcement. A comprehensive study of granular slags of two metallurgical plants was carried out, the physicochemical characteristics of materials were determined. The possibility of obtaining a fraction of ground granular slag with a particle size of no more than 16 microns using vortex electromagnetic homogenization and subsequent air classification is shown.


Sign in / Sign up

Export Citation Format

Share Document