scholarly journals Study and Experimental Validation of the Functional Components and Mechanisms of Hemerocallis citrina Baroni in the Treatment of Lactation Deficiency

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1863
Author(s):  
Jing Zhong ◽  
Yuxuan Liang ◽  
Yongchun Chen ◽  
Jiawei Zhang ◽  
Xiaoying Zou ◽  
...  

The function of Hemerocallis citrina Baroni (daylily) on promoting lactation is reported in several ancient Chinese medicine books. However, nowadays, there is no conclusive data to support this statement. In this study, we investigated the effect of Hemerocallis citrina Baroni extract (HCE) on lactation insufficiency in chronic unpredictable mild stress (CUMS) dams and further explored the mechanism and functional components through network pharmacology. The results showed that HCE could increase the offspring’s weight, serum prolactin (PRL), and oxytocin (OT) level of CUMS dams. Network pharmacology analysis revealed that the facilitation of HCE on lactation is the result of the comprehensive action of 62 components on 209 targets and 260 pathways, among this network, quercetin, kaempferol, thymidine, etc., were the vital material basis, signal transducer and activator of transcription 3 (STAT3), mitogen activity protein kinase 1 (MAPK1), tumor protein P53 (TP53), etc., were the core targets, and the prolactin signaling pathway was the core pathway. In addition, verification test results showed that HCE regulated the abnormal expression of the prolactin signaling pathway, including STAT3, cyclin D1 (CCND1), MAPK1, MAPK8, nuclear factor NF-kappa-B p105 subunit (NFKB1), and tyrosine-protein kinase (JAK2). In conclusion, HCE exhibited a facilitation of lactation insufficiency, in which quercetin, kaempferol, thymidine, etc., were the most important material basis. The mechanism of this promotional effect is mediated by the prolactin signaling pathway in mammary gland.

2021 ◽  
Author(s):  
Yi Pan ◽  
Wanlu Zhao ◽  
Luping Qin ◽  
Lu Zhang

Abstract Background: Youguiyin (YGY) has been confirmed to treat osteoporosis (OP) in clinical trials, but its specific pharmacological mechanism remains unclear. This study aimed to explore the material basis and potential mechanism of YGY in the treatment of OP based on network pharmacology and molecular docking.Methods: Databases including TCMSP, SwissTargetPrediction database, OMIM, and TTD were used to predict the effective ingredients and relevant targets of YGY in the treatment of OP. The STRING database was used to reveal the relationship between each intersection target protein. Metascape database was used to perform GO enrichment analysis and KEGG pathway enrichment analysis on the intersection targets. Cytoscape 3.6.0 software was used to show the complex network relationship of YGY in the treatment of OP. According to the results of network characteristics analysis, the core effective ingredients and the core targets were screened out. Autodock 4.0 was used for molecular docking and Pymol was used to visualize the docking results.Results: 290 effective ingredients, 1127 targets of the effective ingredients, 273 relevant targets of OP and 17 intersection targets were screened out in total by searching literature and databases. Intersection targets could affect biological processes including regulation of inflammatory response, ossification, negative regulation of post-transcriptional gene silencing, positive regulation of cytokine biosynthetic process and regulation of hormone levels by regulating signal pathways including TNF signaling pathway, osteoclast differentiation, apoptosis, MAPK signaling pathway and PI3K/Akt signaling pathway. Through screening, 14 core effective ingredients and 6 core targets were confirmed. The results of molecular docking showed that most of the core effective ingredients including α-humulene, cinnamaldehyde, denudatine, benzoylhypaconine and quercetin had good binding activity with the core targets including TNF-α, IL-1β and IL-6.Conclusion: Based on network pharmacology and molecular docking, the critical effective ingredients, key targets, important signal pathways and main biological processes of YGY in the treatment of OP were successfully screened out. This study revealed the material basis and the mechanism of YGY in the treatment of OP and provided a theoretical basis for follow-up experimental research and clinical application of YGY.


2021 ◽  
Author(s):  
Yi Pan ◽  
Wanlu Zhao ◽  
Luping Qin ◽  
Lu Zhang

Abstract Background: Youguiyin (YGY) has been confirmed to treat osteoporosis (OP) in clinical trials, but its specific pharmacological mechanism remains unclear. This study aimed to explore the material basis and potential mechanism of YGY in the treatment of OP based on network pharmacology and molecular docking.Methods: Databases including TCMSP, SwissTargetPrediction database, OMIM, and TTD were used to predict the effective ingredients and relevant targets of YGY in the treatment of OP. The STRING database was used to reveal the relationship between each intersection target protein. Metascape database was used to perform GO enrichment analysis and KEGG pathway enrichment analysis on the intersection targets. Cytoscape 3.6.0 software was used to show the complex network relationship of YGY in the treatment of OP. According to the results of network characteristics analysis, the core effective ingredients and the core targets were screened out. Autodock 4.0 was used for molecular docking and Pymol was used to visualize the docking results.Results: 290 effective ingredients, 1127 targets of the effective ingredients, 273 relevant targets of OP and 17 intersection targets were screened out in total by searching literature and databases. Intersection targets could affect biological processes including regulation of inflammatory response, ossification, negative regulation of post-transcriptional gene silencing, positive regulation of cytokine biosynthetic process and regulation of hormone levels by regulating signal pathways including TNF signaling pathway, osteoclast differentiation, apoptosis, MAPK signaling pathway and PI3K/Akt signaling pathway. Through screening, 14 core effective ingredients and 6 core targets were confirmed. The results of molecular docking showed that most of the core effective ingredients including α-humulene, cinnamaldehyde, denudatine, benzoylhypaconine and quercetin had good binding activity with the core targets including TNF-α, IL-1β and IL-6.Conclusion: Based on network pharmacology and molecular docking, the critical effective ingredients, key targets, important signal pathways and main biological processes of YGY in the treatment of OP were successfully screened out. This study revealed the material basis and the mechanism of YGY in the treatment of OP and provided a theoretical basis for follow-up experimental research and clinical application of YGY.


2021 ◽  
Author(s):  
Xuedong An ◽  
LiYun Duan ◽  
YueHong Zhang ◽  
De Jin ◽  
Shenghui Zhao ◽  
...  

Abstract BackgroundOur previous randomized, double-blind, placebo-controlled, multi-center clinical study showed that Compound Danshen Dripping Pills (CDDP) had a significant and safe effect in the treatment of diabetic retinopathy (DR), but its mechanism is still unclear, which we would explain based on network pharmacology and molecular docking.MethodThe active ingredients of CDDP (composed of Panax notoginseng, Salvia miltiorrhiza Bge., and Borneol) were searched in the TCMSP database. The validated target and Smiles number of the active ingredient are queried through the PubChem database, and the predicted target of the active ingredient is obtained through the Swisstarget Prediction database. The Drugbank, TTD, and DisGeNET databases were retrieved to obtain the related targets of DR. The core targets were obtained by the cluster analysis function of Cytoscape, and then the Protein-Protein Interaction was performed. The GO and KEGG signal pathways were enriched and clustered in David database. The potential active components and targets were docking with Autodock Vina, and the results were visualized by PyMOL.Result51 active components and 922 validation and prediction targets of CDDP, 715 targets of DR and 154 co-targets were obtained. Cluster analysis showed that there were two clusters, a total of 64 targets. Go and KEGG signal pathway enrichment analysis showed that the top 20 mainly included TNF and HIF-1 signaling pathway. In GO analysis, BP mainly includes positive regulation of smooth muscle cell proliferation and response to hypoxia, CC mainly includes extracellular space and extracellular domain, MF mainly includes protein binding and protein binding recognition. In KEGG database, the key genes in the TNF signaling pathway were TNF, NFkB and VEGF, in HIF-1 signaling pathway were the IL-6, STAT3, HIF1A and VEGF. Molecular docking results showed that all components of CDDP had a certain docking ability with TNF, NFkB, VEGF, IL-6, STAT3 and HIF1A, which of Asiatic acid and Salvianolic acid j was the strongest.Conclusion Based on the network pharmacology and molecular docking, the core active components of CDDP, mainly including Asiatic acid and Salvianolic acid j, which may play a role in regulating cell proliferation and response to inflammation and hypoxia by regulating the binding and recognition of intracellular and extracellular proteins, that is, mainly through TNF signaling pathway and HIF-1 signaling pathway.


2021 ◽  
Vol 16 (9) ◽  
pp. 1934578X2110352
Author(s):  
Tian-Shun Wang ◽  
Xing-Pan Wu ◽  
Qiu-Yuan Jian ◽  
Yan-Fang Yang ◽  
Wu He-Zhen

Severe acute respiratory syndrome (SARS) once caused great harm in China, but now it is the coronavirus disease 2019 (COVID-19) pandemic that has become a huge threat to global health, which raises urgent demand for developing effective treatment strategies to avoid the recurrence of tragedies. Yinqiao powder, combined with modified Sangju decoction (YPCMSD), has been clinically proven to have a good therapeutic effect on COVID-19 in China. This study aimed to analyze the common mechanism of YPCMSD in the treatment of SARS and COVID-19 through network pharmacology and molecular docking and further explore the potential application value of YPCMSD in the treatment of coronavirus infections. Firstly, the active components were collected from the literature and Traditional Chinese Medicine Systems Pharmacology database platform. The COVID-19 and SARS associated targets of the active components were forecasted by the SwissTargetPrediction database and GeneCards. A protein–protein-interaction network was drawn and the core targets were obtained by selecting the targets larger than the average degree. By importing the core targets into database for annotation, visualization, and integrated discovery, enrichment analysis of gene ontology, and construction of a Kyoto Encyclopedia of genes and genomes pathway was conducted. Cytoscape 3.6.1 software was used to construct a “components–targets–pathways” network. Active components were selected to dock with acute respiratory syndrome coronavirus type 2 (SARS-COV-2) 3CL and angiotensin-converting enzyme 2 (ACE2) through Discovery Studio 2016 software. A network of “components–targets–pathways” was successfully constructed, with key targets involving mitogen-activated protein kinase 1, caspase-3 (CASP3), tumor necrosis factor (TNF), and interleukin 6. Major metabolic pathways affected were those in cancer, the hypoxia-inducible factor 1 signaling pathway, the TNF signaling pathway, the Toll-like receptor signaling pathway, and the PI3K-Akt signaling pathway. The core components, such as arctiin, scopolin, linarin, and isovitexin, showed a strong binding ability with SARS-COV-2 3CL and ACE2. We predicted that the mechanism of action of this prescription in the treatment of COVID-19 and SARS might be associated with multicomponents that bind to SARS-COV-2 3CL and ACE2, thereby regulating targets that coexpressed with them and pathways related to inflammation and the immune system.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Xuejiao Xie ◽  
Xingyu Ma ◽  
Siyu Zeng ◽  
Wansi Tang ◽  
Liucheng Xiao ◽  
...  

Atherosclerosis is a common metabolic disease characterized by lipid metabolic disorder. The processes of atherosclerosis include endothelial dysfunction, new endothelial layer formation, lipid sediment, foam cell formation, plaque formation, and plaque burst. Owing to the adverse effects of first-line medications, it is urgent to discover new medications to deal with atherosclerosis. Berberine is one of the most promising natural products derived from traditional Chinese medicine. However, the panoramic mechanism of berberine against atherosclerosis has not been discovered clearly. In this study, we used network pharmacology to investigate the interaction between berberine and atherosclerosis. We identified potential targets related to berberine and atherosclerosis from several databases. A total of 31 and 331 putative targets for berberine and atherosclerosis were identified, respectively. Then, we constructed berberine and atherosclerosis targets with PPI data. Berberine targets network with PPI data had 3204 nodes and 79437 edges. Atherosclerosis targets network with PPI data had 5451 nodes and 130891 edges. Furthermore, we merged the two PPI networks and obtained the core PPI network from the merged PPI network. The core PPI network had 132 nodes and 3339 edges. At last, we performed functional enrichment analyses including GO and KEGG pathway analysis in David database. GO analysis indicated that the biological processes were correlated with G1/S transition of mitotic cells cycle. KEGG pathway analysis found that the pathways directly associated with berberine against atherosclerosis were cell cycle, ubiquitin mediated proteolysis, MAPK signaling pathway, and PI3K-Akt signaling pathway. After combining the results in context with the available treatments for atherosclerosis, we considered that berberine inhibited inflammation and cell proliferation in the treatment of atherosclerosis. Our study provided a valid theoretical foundation for future research.


2021 ◽  
Vol 7 (4) ◽  
pp. 765-775
Author(s):  
Junwei Wu ◽  
Mengting Qin ◽  
Hong Pan ◽  
Qi Pan ◽  
Shoufeng Wang ◽  
...  

Lung cancer (the 5-year survival rate is only about 16%) has a low survival rate, and more-effective drugs are urgently needed. Our team discovered that cortex Periplocae Radicis has obvious toxic effects on various cancer cells, including lung cancer cells. However, the mechanism is not clear. Therefore, we used the PubChem database to obtain periplogenin as the target of therapeutic drugs and the TCGA database to obtain differential genes of lung cancer. The results showed that MMP9, PPARG, BMP2, and TGFB2 were the core proteins of periplogenin acting on lung adenocarcinoma (LUAD), and MMP9, angiotensin-converting enzyme (ACE), BMP2, PPARG, MMP13, MMP3, and TGFB2 were the core proteins of periplogenin acting on lung squamous cell carcinoma (LUCS). Through gene ontology (GO) enrichment analysis, it was found that periplogenin mainly acted on LUAD via fatty acid binding, metallopeptidase activity, and monocarboxylic acid binding, and mainly acted on lung squamous carcinoma (LUSC) via endopeptidase activity, metallopeptidase activity, and serine-type peptidase activity. Kyoto Encyclopedia of Genes, and Genomes (KEGG) analysis revealed that the IL-17 signaling pathway, fluid shear stress, atherosclerosis, hepatocellular carcinoma, and so on, were the main signaling pathways of periplogenin acting on LUSC, whereas glycolysis/gluconeogenesis, and the peroxisome proliferator-activated receptor (PPAR) signaling pathway were major signaling pathways of periplogenin acting on LUAD. This shows that treatment of lung cancer can be achieved through multi-targeted, and multi-channel periplogenin activity.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Qi Jin ◽  
Xiao-Feng Hao ◽  
Li-Ke Xie ◽  
Jing Xu ◽  
Mei Sun ◽  
...  

Background. Diabetic retinopathy (DR) includes a series of typical lesions affected by retinal microvascular damage caused by diabetes mellitus (DM), which not only seriously damages the vision, affecting the life’s quality of patients, but also brings a considerable burden to the family and society. Astragalus Membranaceus (AM) is a commonly used medicine in clinical therapy of eye disorders in traditional Chinese medicine (TCM). In recent years, it is also used for treating DR, but the specific mechanism is unclear. Therefore, this study explores the potential mechanism of AM in DR treatment by using network pharmacology. Methods. Based on the oral bioavailability (OB) and drug likeness (DL) of two ADME (absorption, distribution, metabolism, excretion) parameters, Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), Swiss Target Prediction platform, GeneCards, and OMIM database were used to predict and screen the active compounds of AM, the core targets of AM in DR treatment. The Metascape data platform was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the core targets. Results. 24 active compounds were obtained, such as quercetin, kaempferol, and astragaloside IV. There were 169 effective targets of AM in DR treatment, and the targets were further screened and finally, 38 core targets were obtained, such as VEGFA, AKT1, and IL-6. EGFR tyrosine kinase inhibitor resistance, AGE-RAGE signaling pathway in diabetic complications, PI3K-Akt signaling pathway, and other metabolic pathways participated in oxidative stress, cell apoptosis, angiogenesis signal transduction, inflammation, and other biological processes. Conclusion. AM treats DR through multiple compounds, multiple targets, and multiple pathways. AM may play a role in the treatment of DR by targeting VEGFA, AKT1, and IL-6 and participating in oxidative stress, angiogenesis, and inflammation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Li Shen ◽  
Yiguo Jiang ◽  
Jinmiao Lu ◽  
Guangfei Wang ◽  
Xiaolan Zhang ◽  
...  

Objective. Exploration of the underlying molecular mechanism of Jinchan Oral Liquid (JOL) in treating children with the respiratory syncytial virus (RSV) pneumonia to provide new evidence for the clinical application. Methods. The active components and target genes of JOL were screened by the TCMSP database. The targets of RSV pneumonia were obtained from the GeneCards, OMIM, DrugBank, and PharmGKB database. Then, we constructed the active component-target network and screened the core genes. The overlaps were screened for PPI network analysis, GO analysis, and KEGG analysis. Finally, result validation was performed by molecular docking. Results. According to the screening criteria of the ADME, 74 active compounds of JOL were obtained; after removing redundant targets, we selected 180 potential targets. By screening the online database, 893 RSV pneumonia-related targets were obtained. A total of 82 overlapping genes were chosen by looking for the intersection. The STRING online database was used to acquire PPI relationships, and 16 core genes were obtained. GO and KEGG analyses showed that the main pathways of JOL in treating RSV pneumonia include TNF signaling pathway and IL17 signaling pathway. The molecular docking results showed that the active compounds of JOL had a good affinity with the core genes. Conclusion. In this study, we preliminarily discussed the main active ingredients, related targets, and pathways of JOL and predicted the pharmacodynamic basis and the potential therapeutic mechanisms of RSV pneumonia. In summary, the network pharmacology strategy may be helpful for the discovery of multitarget drugs against complex diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kexin Wang ◽  
Kai Li ◽  
Yupeng Chen ◽  
Genxia Wei ◽  
Hailang Yu ◽  
...  

Traditional Chinese medicine (TCM) usually plays therapeutic roles on complex diseases in the form of formulas. However, the multicomponent and multitarget characteristics of formulas bring great challenges to the mechanism analysis and secondary development of TCM in treating complex diseases. Modern bioinformatics provides a new opportunity for the optimization of TCM formulas. In this report, a new bioinformatics analysis of a computational network pharmacology model was designed, which takes Chai-Hu-Shu-Gan-San (CHSGS) treatment of depression as the case. In this model, effective intervention space was constructed to depict the core network of the intervention effect transferred from component targets to pathogenic genes based on a novel node importance calculation method. The intervention-response proteins were selected from the effective intervention space, and the core group of functional components (CGFC) was selected based on these intervention-response proteins. Results show that the enriched pathways and GO terms of intervention-response proteins in effective intervention space could cover 95.3 and 95.7% of the common pathways and GO terms that respond to the major functional therapeutic effects. Additionally, 71 components from 1,012 components were predicted as CGFC, the targets of CGFC enriched in 174 pathways which cover the 86.19% enriched pathways of pathogenic genes. Based on the CGFC, two major mechanism chains were inferred and validated. Finally, the core components in CGFC were evaluated by in vitro experiments. These results indicate that the proposed model with good accuracy in screening the CGFC and inferring potential mechanisms in the formula of TCM, which provides reference for the optimization and mechanism analysis of the formula in TCM.


2020 ◽  
Author(s):  
Xiao Song ◽  
Fei Guo ◽  
Xiao-Chen Sun ◽  
Shu-Yue Wang ◽  
Yao-Hui Yuan ◽  
...  

Abstract Background: Leukemia was listed by the World Health Organization as one of the five most intractable diseases in the world. The multi-drug resistance (MDR) of leukemia cells limits the efficacy of anti-tumor drugs and is the major reason for the chemotherapy failure and recurrence of leukemia chemotherapy. Some studies have shown that Euphorbiae semen (ES) possesses the characteristics of new therapeutic drugs for MDR. However, the molecular mechanisms and active compounds have not yet been fully clarified. Therefore, there is a need for explore its active compounds and demonstrate its mechanisms through network pharmacology and molecular docking technology.Method: First, the TCMSP database was searched and screened the active compounds of the ES, supplemented with compounds verified by literature, so as to further identify the core compounds in the active ingredient. Simultaneously, the TCMSP and Swiss database were searched to the targets of active compounds, and the targets of reverses leukemia multidrug resistance (RL-MDR) were screened in the relevant databases, such as GeneCards and DrugBank. Then, the targets of active compounds were intersected with RL-MDR targets to obtain potential targets of ES acting on MDR. The compound–target network was constructed by Cytoscape. The target protein–protein interaction network was built using STRING and Cytoscape database. Second, the R language and DAVID database were used to analyse Gene Ontology (GO) biological functions analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathways enrichment. Finally, molecular docking method was utilized to investigate the binding activity between the core targets and the active compounds of ES.Results: Compound–target network mainly contained 22 compounds and 81 corresponding targets. Finally, seven components in ES were selected and 10 core targets were identified; Key targets contained JUN, CASP3, MAOA, AR, PPARG, DRD2, ADRA2A, CHRM2, PTGS2 and MAPK14. GO enrichment analysis indicated the main biological functions of potential genes of ES in the treatment of MDR. KEGG pathway enrichment analysis showed the main pathways, mainly including apoptosis, pathways in cancer, p53 signaling pathway, VEGF signaling pathway, TNF signaling pathway and PI3K–Akt signaling pathway. Finally, we chose the top 10 common targets for molecular docking with the 7 active compounds of ES. The results of molecular docking indicated that the compounds of ES, which had good affinity with targets. Conclusion: The molecular mechanism of ES in the treatment of MDR showed the synergistic reaction of multi-compound, multi-target, and multi-pathway of traditional Chinese medicine, which provided ideas for further clinical research.


Sign in / Sign up

Export Citation Format

Share Document