scholarly journals Application and Effects of Ohmic-Vacuum Combination Heating on the Quality Factors of Tomato Paste

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2920
Author(s):  
Zina T. Alkanan ◽  
Ammar B. Altemimi ◽  
Asaad R. S. Al-Hilphy ◽  
Francesco Cacciola ◽  
Salam A. Ibrahim

Ohmic-vacuum combination heating is a common method used in the food industry as a concentration process. In the present study, an OH-VC combination heating system was developed for producing tomato paste at temperatures of 70, 80, and 90 °C and pressure of 0.3, 0.5, and 0.7 bar and electric field of 1.82, 2.73, and 3.64 V/cm using a central composite design. The effects of heating conditions on the quality and sensory evaluation of tomato paste were also evaluated. Each combination of temperature, pressure, and the electric field was quantified for specific energy consumption, energy efficiency, and productivity. A decrease of 35.08% in the amount of acid ascorbic and lycopene content 19.01%, using conventional heating compared to ohmic-vacuum heating under optimized conditions, was attained. The results also highlighted an increase in the amount of HMF (69.79%) and PME (24.33%) using conventional heating compared to ohmic-vacuum heating under optimized conditions. Ascorbic acid, lycopene, titratable acidity, productivity, energy efficiency was higher than conventional heating; on the other hand, HMF, PME, pH, SEC were lower than conventional heating at the applied OH-VC process. No significant effects between OH-VC and conventional heating on the TSS were observed. In addition, OH-VC heating was highly efficient in the inhibition of bacterial growth. Further, a minor effect on the sensory properties of tomato paste with OH-VC heating compared to the conventional treatment. The obtained results indicate a strong potential for an OH-VC combination heating system as a rapid-heating, high-efficiency alternative for saving electrical energy consumption and preserving nutritional value.

Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Manuel César Martí-Calatayud ◽  
Mario Sancho-Cirer Poczatek ◽  
Valentín Pérez-Herranz

Electrodialysis (ED) has been recently introduced in a variety of processes where the recovery of valuable resources is needed; thus, enabling sustainable production routes for a circular economy. However, new applications of ED require optimized operating modes ensuring low energy consumptions. The application of pulsed electric field (PEF) electrodialysis has been demonstrated to be an effective option to modulate concentration polarization and reduce energy consumption in ED systems, but the savings in energy are usually attained by extending the operating time. In the present work, we conduct a comprehensive simulation study about the effects of PEF signal parameters on the time and energy consumption associated with ED processes. Ion transport of NaCl solutions through homogeneous cation-exchange membranes is simulated using a 1-D model solved by a finite-difference method. Increasing the pulse frequency up to a threshold value is effective in reducing the specific energy consumption, with threshold frequencies increasing with the applied current density. Varying the duty cycle causes opposed effects in the time and energy usage needed for a given ED operation. More interestingly, a new mode of PEF functions with the application of low values of current during the relaxation phases has been investigated. This novel PEF strategy has been demonstrated to simultaneously improve the time and the specific energy consumption of ED processes.


Author(s):  
V. Nakhodov ◽  
O. Borychenko ◽  
A. Cherniavskyi

Statistics show that energy is one of the highest operating costs in a manufacturing enterprise. So, improving energy efficiency can lead to a significant increase in profits and reduce the impact of the enterprise on the environment. To increase the performance of energy efficiency activities, it is necessary to implement an energy management system. One of the components of this system is energy monitoring, which, in turn, is based on the periodic collection and analysis of data to assess the state of the monitoring objects in terms of energy efficiency. In this paper, the role and place of energy monitoring in the energy management system of an industrial enterprise are noted. The paper proposes the concept of creating energy monitoring system in industrial companies, which is based on the combination of a monitoring system based on specific energy consumption, and usage of group energy characteristics of production facilities. Implementing such energy monitoring systems will allow to conduct operational control of energy efficiency of production facilities by creating individual systems for monitoring energy efficiency, as well as successfully carry out such monitoring at the enterprise and its subdivisions over longer periods of time using specific energy consumption indicators. It also provides general guidelines for conducting energy monitoring. These guidelines were formed based on the results of studying various methods and scientific publications in the field of energy monitoring, as well as on the basis of practical experience in the development and implementation of energy management systems. Particular attention is paid to the issues of processing and analysis of information about the objects of energy monitoring of industrial enterprises. The practical application of the concept of creating energy monitoring systems envisages gradual improvement of the existing monitoring system based on the specific energy consumption, which will be further completely replaced with individual energy efficiency monitoring systems.


2014 ◽  
Vol 10 (2) ◽  
pp. 269-280 ◽  
Author(s):  
Hosain Darvishi ◽  
Mohammad Zarein ◽  
Saied Minaei ◽  
Hamid Khafajeh

Abstract The energy and exergy analysis, drying characteristics and mathematical modeling of the thin-layer drying kinetics of white mulberry using microwave drying were investigated. Results indicated that values of exergy efficiency (33.63–57.08%) were higher than energy efficiency (31.85–55.56%). Specific energy consumption increased with increasing microwave power while improvement potential decreased. The specific energy consumption and improvement potential varied from 3.97 to 6.73 MJ/kg water and 0.71 to 2.97 MJ/kg water, respectively. Also, energy efficiency decreased with decrease in moisture content and microwave power level. The best exergy and energy aspect was obtained by drying at 100 W microwave power. Drying took place mainly in warming up, constant rate and falling rate periods. The Page model showed the best fit to experimental drying data. Effective diffusivity increased with decreasing moisture content and increasing microwave power. It varied from 1.06 × 10−8 to 3.45 × 10−8 m2/s, with an energy activation of 3.986 W/g.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 247 ◽  
Author(s):  
Akvile Lawrence ◽  
Patrik Thollander ◽  
Mariana Andrei ◽  
Magnus Karlsson

Although several research studies have adopted specific energy consumption (SEC) as an indicator of the progress of improved energy efficiency, publications are scarce on critical assessments when using SEC. Given the increasing importance of monitoring improved industrial energy efficiency and the rising popularity of SEC as an energy key performance indicator (e-KPI), an in-depth analysis and problematization on the pros and cons of using SEC would appear to be needed. The aim of this article is to analyse SEC critically in relation to industrial energy efficiency. By using SEC in the pulp and paper industry as an example, the results of this exploratory study show that although SEC is often used as an e-KPI in industry, the comparison is not always straightforward. Challenges emanate from a lack of information about how SEC is calculated. It is likely that SEC is an optimal e-KPI within the same study, when all deployed SECs are calculated in the same way, and with the same underlying assumptions. However, before comparing SEC with other studies, it is recommended that the assumptions on which calculations are based should be scrutinized in order to ensure the validity of the comparisons. The paper remains an important contribution in addition to the available handbooks.


Author(s):  
D. I. Sidorkin ◽  
K. S. Kupavykh

The paper analyzes the main techniques and technologies of oil fluid recovery in the context of energy consumption, significantly rising over the latest decade. It is recognized that the number of publications in the area of energy efficiency is growing steadily. Currently Russian oil and gas industry are facing the task of accelerating reduction of energy consumption while preserving, or even increasing, production rates. The task is complicated by the fact that the majority of deposits in Russia either have already entered (primarily, Volga-Ural region) or are now entering (West Siberia) their last stage of exploration, whereas new deposits in East Siberia are only being brought into production. Furthermore, a lot of new deposits, which provide for high recovery rates, are profitable a priori as at the first stage of exploration they do not need any artificial lift due to their free flow production without any oil well pumps. However, there is a significant share of new deposits with low-permeability reservoirs, which require either a system of reservoir pressure maintenance or periodic hydraulic fracturing. At the same time deposits at the late stages of exploration, apart from the use of pump units, systems of reservoir pressure maintenance and hydraulic fracturing, require regular repair and restoration, measures against salt and heavy oil sediments, mechanical impurities, flooding, etc., which all has a negative effect on well profitability. In order to solve these problems, the authors review existing methods and calculate specific energy consumption using various pump systems for hypothetical wells, varying in yield. According to the research results, it has been revealed that from the point of view of energy efficiency, it is desirable to equip low- and low-yield wells with sucker rod progressive cavity pump units, medium-yield ones – with electric progressive cavity pumps driven by permanent magnet motor, medium- and high-yield wells – with electric progressive cavity pumps or electric submersible pumps driven by permanent magnet motor, depending on the characteristics of the pumpedout oil fluid.


2021 ◽  
Vol 64 (2) ◽  
pp. 89-94
Author(s):  
N. A. Cheremiskina ◽  
N. V. Shchukina ◽  
N. B. Loshkarev ◽  
V. V. Lavrov

One of the most energy-intensive industries is ferrous metallurgy. The metallurgical sector in industrially developed countries is reducing its specific energy consumption per one ton of products by approximately 1.0 – 1.5 % per annum. In Russia, obsolete technology is the main reason for the high-energy intensity of industrial product. Energy saving in industrial production is associated with production technology and the scope of fuel and energy resources consumption. Therefore, ways to improve energy efficiency focus on reducing energy consumption of any kind during a specific process in a specific process or thermal unit. Ensuring the economical operation of furnace units requires detailed preliminary and verification analyses, upgrading and introduction of state-of-the-art equipment. The study presents a flow diagram and features of thermal operation of a new drum-type chamber furnace for heating metal products for quenching. The technical parameters of the furnace, the results of the thermo-technical analysis, the heat balance and the specific fuel consumption as applicable to the created design are also presented. The flow diagram of the furnace has significant advantages in terms of the energy efficiency of fuel as compared to the roller and conveyor methods of metal transportation. Placing blanks on the drum significantly reduces the complexity of their transportation. Thanks to its small length the proposed design is compact and easy to place in a workshop. The use of a recuperative fuel burning device allows the efficient use of the heat of waste gases in the heating process. The proposed design and method of products transportation in the furnace working space can be used for the heat treatment of bars, pipes, strips, as well as rolled steel of various shapes.


2020 ◽  
Vol 20 (8) ◽  
pp. 3096-3106
Author(s):  
Simeng Li ◽  
Karla Duran ◽  
Saied Delagah ◽  
Joe Mouawad ◽  
Xudong Jia ◽  
...  

Abstract Reverse osmosis (RO) technologies have been widely implemented around the world to address the rising severity of freshwater scarcity. As desalination capacity increases, reducing the energy consumption of the RO process per permeate volume (i.e., specific energy consumption) is of particular importance. In this study, numerical models are used to characterize and compare the energy efficiency of one-stage continuous RO, multi-stage continuous RO, and closed-circuit RO (CCRO) processes. The simulated results across a broad range of feed salinity (5,000–50,000 ppm, i.e., 5–50 g kg−1) and recovery (40%–95%) demonstrate that, compared with the most common one-stage continuous RO, two-stage and three-stage continuous RO can reduce the specific energy consumption by up to 40.9% and 53.6%, respectively, while one-stage and two-stage CCRO can lead to 45.0% and 67.5% reduction, respectively. The differences in energy efficiencies of various RO configurations are more salient when desalinating high-salinity feed at a high recovery ratio. From the standpoints of energy saving and capital cost, the simulated results indicate that multi-stage CCRO is an optimal desalination process with great potential for practical implementation.


Author(s):  
L. Gan ◽  
W. Xiong ◽  
L. Li ◽  
L. Zhu ◽  
H. Huang

Abstract Stamping is employed in a wide range of applications including household appliances, automobiles, vessel, and aerospace. Due to the discrete flow energy-intensive processes and dynamic energy changes in stamping production, it has great potential for energy savings. There still lacks an effective method to monitor and analyze the energy efficiency in stamping workshop. To this end, this paper proposes an energy efficiency monitoring and analysis system based on Internet of Things (IoT). The characteristics in stamping workshop are first analyzed, the energy consumption is decomposed, and the makespan is quantified. Besides, energy efficiency indicators of energy efficiency in the press machine, specific energy consumption in the part, and energy efficiency in the workshop are analyzed and defined. Then the detailed information about the energy efficiency monitoring and analysis system as data acquisition, data transmission, data storage, data analysis, and display based on IoT is presented. Finally, a forklift stamping workshop was investigated to validate the effectiveness of the proposed method. The interface and the results of the data analysis showed that the proposed system can monitor the energy efficiency in the stamping workshop comprehensively. Furthermore, potential opportunities for energy consumption reduction and efficient production can be identified.


Author(s):  
Nikolay Tymchenko ◽  
◽  
Nataliia Fialko ◽  

The article analyzes the main trends in the modern energy policy of Ukraine in the field of ensuring the energy efficiency of civilian facilities. The specific energy consumption in the processes of heating/cooling of residential buildings and the sectoral situation of energy supply/energy consumption in Ukraine are analyzed.


Author(s):  
Alexander Baklanov ◽  
Nikolay Yesin ◽  
Andrey Shilyakov

Objective: To study the specificities and parameters of the new, including innovative, freight and passenger electric locomotives, produced for domestic railways in the framework of the program of creating the new locomotives in 2004–2010. To analyze pull and energy efficiency parameters of direct current and alternating current electric locomotives. To estimate the maximum weight of trains and specific energy consumption of electric locomotives. To detect the advantages of new electric locomotives in comparison with those produced earlier. To develop guidelines on efficiency improvement of the new electric locomotives. Methods: Comparative analysis, methods of grade computations, linear regression analysis, power balance method. Results: The main design features and parameters of the new and earlier produced electric locomotives were studied, the former include the power of tractive motors, traction effort, as well as the speed at continuous rating of traction. The parameters of the new and earlier produced electric locomotives were compared. Key performance indicators of electric locomotives were analyzed, such as the maximum mass of a train and specific energy consumption on traction. The comparison of the above-mentioned indicators with performance indicators of earlier produced electric locomotives was given. According to calculation data and statistical data analysis the advantages of new electric locomotives were determined over those produced earlier. High performance of regenerative breaking was shown, specifically new electric locomotives. It was detected that in winter regeneration of electric energy was significantly reduced, in case of regenerative braking of passenger electric locomotives series EP1 with alternating current, as most of energy generated by tractive motors was spent on electric heating circuits of passenger cars. Guidelines on efficiency improvement of new electric locomotives were developed. Practical importance: The conditions in which new electric locomotives would implement the available advantages were determined, compared to those produced earlier. The elaborated offers make it possible to improve pull and energy efficiency of the new electric locomotives in operation.


Sign in / Sign up

Export Citation Format

Share Document