scholarly journals Intestinal Organoids: New Tools to Comprehend the Virulence of Bacterial Foodborne Pathogens

Foods ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Mayra Aguirre Garcia ◽  
Killian Hillion ◽  
Jean-Michel Cappelier ◽  
Michel Neunlist ◽  
Maxime M. Mahe ◽  
...  

Foodborne diseases cause high morbidity and mortality worldwide. Understanding the relationships between bacteria and epithelial cells throughout the infection process is essential to setting up preventive and therapeutic solutions. The extensive study of their pathophysiology has mostly been performed on transformed cell cultures that do not fully mirror the complex cell populations, the in vivo architectures, and the genetic profiles of native tissues. Following advances in primary cell culture techniques, organoids have been developed. Such technological breakthroughs have opened a new path in the study of microbial infectious diseases, and thus opened onto new strategies to control foodborne hazards. This review sheds new light on cellular messages from the host–foodborne pathogen crosstalk during in vitro organoid infection by the foodborne pathogenic bacteria with the highest health burden. Finally, future perspectives and current challenges are discussed to provide a better understanding of the potential applications of organoids in the investigation of foodborne infectious diseases.

2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Julia Günter ◽  
Petra Wolint ◽  
Annina Bopp ◽  
Julia Steiger ◽  
Elena Cambria ◽  
...  

More people die annually from cardiovascular diseases than from any other cause. In particular, patients who suffer from myocardial infarction may be affected by ongoing adverse remodeling processes of the heart that may ultimately lead to heart failure. The introduction of stem and progenitor cell-based applications has raised substantial hope for reversing these processes and inducing cardiac regeneration. However, current stem cell therapies using single-cell suspensions have failed to demonstrate long-lasting efficacy due to the overall low retention rate after cell delivery to the myocardium. To overcome this obstacle, the concept of 3D cell culture techniques has been proposed to enhance therapeutic efficacy and cell engraftment based on the simulation of an in vivo-like microenvironment. Of great interest is the use of so-called microtissues or spheroids, which have evolved from their traditional role as in vitro models to their novel role as therapeutic agents. This review will provide an overview of the therapeutic potential of microtissues by addressing primarily cardiovascular regeneration. It will accentuate their advantages compared to other regenerative approaches and summarize the methods for generating clinically applicable microtissues. In addition, this review will illustrate the unique properties of the microenvironment within microtissues that makes them a promising next-generation therapeutic approach.


Author(s):  
Carmen Aguilar ◽  
Marta Alves da Silva ◽  
Margarida Saraiva ◽  
Mastura Neyazi ◽  
I. Anna S. Olsson ◽  
...  

AbstractInfectious diseases are a major threat worldwide. With the alarming rise of antimicrobial resistance and emergence of new potential pathogens, a better understanding of the infection process is urgently needed. Over the last century, the development of in vitro and in vivo models has led to remarkable contributions to the current knowledge in the field of infection biology. However, applying recent advances in organoid culture technology to research infectious diseases is now taking the field to a higher level of complexity. Here, we describe the current methods available for the study of infectious diseases using organoid cultures.


Biology Open ◽  
2020 ◽  
pp. bio.050211
Author(s):  
Katherine K. Slemmons ◽  
Michael D. Deel ◽  
Yi-Tzu Lin ◽  
Kristianne M. Oristian ◽  
Nina Kuprasertkul ◽  
...  

The development of three-dimensional cell culture techniques has allowed cancer researchers to study the stemness properties of cancer cells in in vitro culture. However, a method to grow PAX3-FOXO1 fusion-positive rhabdomyosarcoma (FP-RMS) - an aggressive soft tissue sarcoma of childhood - has to date not been reported, hampering efforts to identify the dysregulated signaling pathways that underlie FP-RMS stemness. Here, we first examine the expression of canonical stem cell markers in human RMS tumors and cell lines. We then describe a method to grow FP-RMS cell lines as rhabdospheres and demonstrate that these spheres are enriched in expression of canonical stemness factors as well as Notch signaling components. Specifically, FP-RMS rhabdospheres have increased expression of SOX2, POU5F1 (OCT4), and NANOG, and several receptors and transcriptional regulators in the Notch signaling pathway. FP-RMS rhabdospheres also exhibit functional stemness characteristics including multipotency, increased tumorigenicity in vivo, and chemoresistance. This method provides a novel practical tool to support research into FP-RMS stemness and chemoresistance signaling mechanisms.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 124
Author(s):  
Csaba Forro ◽  
Davide Caron ◽  
Gian Angotzi ◽  
Vincenzo Gallo ◽  
Luca Berdondini ◽  
...  

Brain-on-Chip (BoC) biotechnology is emerging as a promising tool for biomedical and pharmaceutical research applied to the neurosciences. At the convergence between lab-on-chip and cell biology, BoC couples in vitro three-dimensional brain-like systems to an engineered microfluidics platform designed to provide an in vivo-like extrinsic microenvironment with the aim of replicating tissue- or organ-level physiological functions. BoC therefore offers the advantage of an in vitro reproduction of brain structures that is more faithful to the native correlate than what is obtained with conventional cell culture techniques. As brain function ultimately results in the generation of electrical signals, electrophysiology techniques are paramount for studying brain activity in health and disease. However, as BoC is still in its infancy, the availability of combined BoC–electrophysiology platforms is still limited. Here, we summarize the available biological substrates for BoC, starting with a historical perspective. We then describe the available tools enabling BoC electrophysiology studies, detailing their fabrication process and technical features, along with their advantages and limitations. We discuss the current and future applications of BoC electrophysiology, also expanding to complementary approaches. We conclude with an evaluation of the potential translational applications and prospective technology developments.


Author(s):  
Estelle H. Venter ◽  
Truuske Gerdes ◽  
Isabel Wright ◽  
Johan Terblanche

Bluetongue (BT), a disease that affects mainly sheep, causes economic losses owing to not only its deleterious effects on animals but also its associated impact on the restriction of movement of livestock and livestock germplasm. The causative agent, bluetongue virus (BTV), can occur in the semen of rams and bulls at the time of peak viraemia and be transferred to a developing foetus. The risk of the transmission of BTV by bovine embryos is negligible if the embryos are washed according to the International Embryo Transfer Society (IETS) protocol. Two experiments were undertaken to determine whether this holds for ovine embryos that had been exposed to BTV. Firstly, the oestrus cycles of 12 ewes were synchronised and the 59 embryos that were obtained were exposed in vitro to BTV-2 and BTV-4 at a dilution of 1 x 102.88 and 1 x 103.5 respectively. In the second experiment, embryos were recovered from sheep at the peak of viraemia. A total of 96 embryos were collected from BTV-infected sheep 21 days after infection. In both experiments half the embryos were washed and treated with trypsin according to the IETS protocol while the remaining embryos were neither washed nor treated. All were tested for the presence of BTV using cell culture techniques. The virus was detected after three passages in BHK-21 cells only in one wash bath in the first experiment and two unwashed embryos exposed to BTV-4 at a titre of 1 x 103.5. No embryos or uterine flush fluids obtained from viraemic donors used in the second experiment were positive for BTV after the standard washing procedure had been followed. The washing procedure of the IETS protocol can thus clear sheep embryos infected with BTV either in vitro or in vivo.


Author(s):  
R. B. Pragathi ◽  
Shobana Sugumar

Background: Stenotrophomonas maltophilia is an aerobic, non-fermentative, gram-negative, multidrug-resistant, an opportunistic nosocomial pathogen. It is associated with high morbidity and mortality in severely immunocompromised pediatric patients, including neonates. Immunoinformatic analysis paved a new way to design epitope-based vaccines, which results in a potential immunogen at a lower cost, specific immunity, easy to produce, devoid of side effects, less time consuming than conventional vaccines. To date, there is no development of vaccines or antibody-based treatments for S. maltophilia-associated infections. Introduction: Currently, epitope-based peptide vaccines against pathogenic bacteria have grasped more attention. In our present study, we have utilized various immunoinformatic tools to find a significant epitope that interacts with the maximum number of HLA alleles and the maximum population coverage for developing a vaccine against Stenotrophomonas maltophilia. Methods: This study has incorporated an immunoinformatic based screening approach to explore potential epitope-based vaccine candidates in Stenotrophomonas maltophilia proteome. In this study, 4365 proteins of the Stenotrophomonas maltophilia K279a proteome were screened to identify potential antigens and could be used as the right candidate for the vaccine. Various immunoinformatic tools were used to predict the binding of the promiscuous epitopes with Major Histocompatibility Complex (MHC) class I molecules. Other properties such as allergenicity, physiochemical, adhesion properties, antigenicity, population coverage, epitope conservancy, and toxicity were analyzed for the predicted epitope. Results: This study helps in finding the major epitope in Stenotrophomonas infections. Hence the main objective in this research was to screen complete Stenotrophomonas maltophilia proteome to recognize putative epitope candidates for vaccine design. Using computational vaccinology, immunoinformatic tools approach, and several aspects are obligatory to be fulfilled by an epitope to consider as a vaccine candidate. Our findings were promising and showed that the predicted epitopes were non-allergenic and fulfilled the other parameters required for a suitable candidate based on specific physiochemical, antigenic, and adhesion properties. Conclusion: The epitopes LLFVLCWPL and KSGEGKCGA have shown the highest binding score of −103 and −78.1 kcal/mol with HLA-A*0201 and HLA-B*0702 MHC class I allele, respectively. They were also predicted to be immunogenic and non-allergen. Further various immunological tests both in vivo and in vitro methods to be performed for finding the efficiency of the predicted epitope in the development of a targeted vaccine against Stenotrophomonas maltophilia infection.


2020 ◽  
Vol 10 (2) ◽  
pp. 20190090 ◽  
Author(s):  
H. W. Hoyle ◽  
L. A. Smith ◽  
R. J. Williams ◽  
S. A. Przyborski

As the field of tissue engineering continues to advance rapidly, so too does the complexity of cell culture techniques used to generate in vitro tissue constructs, with the overall aim of mimicking the in vivo microenvironment. This complexity typically comes at a cost with regards to the size of the equipment required and associated expenses. We have developed a small, low-cost bioreactor system which overcomes some of the issues of typical bioreactor systems while retaining a suitable scale for the formation of complex tissues. Herein, we have tested this system with three cell populations/tissues: the culture of hepatocellular carcinoma cells, where an improved structure and basic metabolic function is seen; the culture of human pluripotent stem cells, in which the cultures can form more heterogeneous tissues resembling the in vivo teratoma and ex vivo liver tissue slices, in which improved maintenance of cellular viability is seen over the 3 days tested. This system has the flexibility to be used for a variety of further uses and has the potential to provide a more accessible alternative to current bioreactor technologies.


Author(s):  
W. Mark Saltzman

Synthetic and natural polymers are an important element in new strategies for producing engineered tissue. Polymers are currently used in a wide range of biomedical applications, including applications in which the polymer remains in intimate contact with cells and tissues for prolonged periods. As discussed in Chapter 1, several classes of polymers have proven to be most useful in biomedical applications and, therefore, might be appropriate for tissue engineering applications. To produce tissue-engineered materials composed of polymers and cells, however, it is first necessary to understand the influence of these polymeric materials on cell viability, growth, and function. Cell interactions with polymers are usually studied using cell culture techniques. While in vitro studies do not reproduce the wide range of cellular responses observed following implantation of materials, the culture environment provides a level of control and quantification that cannot usually be obtained in vivo. Cells in culture are generally plated over a polymer surface and the extent of cell adhesion and spreading on the surface can be measured. By maintaining the culture for longer periods the influence of the substrate on cell viability, function, and motility can also be determined. Since investigators use different techniques to assess cell interactions with polymers, and because the differences between techniques are critically important for interpretation of interactions, some of the most frequently used in vitro methods are reviewed in this section. Before any measurement of cell interaction with a polymer substrate can be attempted, the polymeric material and the cells must come into contact. Preferably, this contact should be controlled (or at least understood) by the experimentalist. This is a critical, and often overlooked, aspect of all of these measurements. Some materials are easily fabricated in a format suitable for study; polystyrene films, for example, are transparent, durable, and strong. Other materials must be coated onto a rigid substrate (such as a glass coverslip) prior to study. Cell function is sensitive to chemical, morphological, and mechanical properties of the surface; therefore, almost every aspect of material preparation can introduce variables that are known to influence cell interactions.


Author(s):  
W.N. Bentham ◽  
V. Rocha

It has been an interest of our lab to develop a mammary epethelial cell culture system that faithfully duplicates the in vivo condition of the lactating gland. Since the introduction of collagen as a matrix on which cells are cultivated other E.C.M. type matrices have been made available and are used in many cell culture techniques. We have previously demonstrated that cells cultured on collagen and Matrigel do not differentiate as they do in vivo. It seems that these cultures often produce cells that show a disruption in the secretory process. The appearance of large ribosomal studded vesicles, that specifically label with antibody to casein, suggest an interruption of both protein maturation and secretion at the E.R. to golgi transition. In this report we have examined cultures on collagen and Matrigel at relative high and low seeding densities and compared them to cells from the in vivo condition.


2019 ◽  
Vol 25 (36) ◽  
pp. 3872-3880 ◽  
Author(s):  
Marcel M. Bergmann ◽  
Jean-Christoph Caubet

Severe cutaneous adverse reactions (SCAR) are life-threatening conditions including acute generalized exanthematous pustulosis (AGEP), Stevens-Johnson Syndrome (SJS), toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS). Diagnosis of causative underlying drug hypersensitivity (DH) is mandatory due to the high morbidity and mortality upon re-exposure with the incriminated drug. If an underlying DH is suspected, in vivo test, including patch tests (PTs), delayed-reading intradermal tests (IDTs) and in vitro tests can be performed in selected patients for which the suspected culprit drug is mandatory, or in order to find a safe alternative treatment. Positivity of in vivo and in vitro tests in SCAR to drug varies depending on the type of reaction and the incriminated drugs. Due to the severe nature of these reactions, drug provocation test (DPT) is highly contraindicated in patients who experienced SCAR. Thus, sensitivity is based on positive test results in patients with a suggestive clinical history. Patch tests still remain the first-line diagnostic tests in the majority of patients with SCAR, followed, in case of negative results, by delayed-reading IDTs, with the exception of patients with bullous diseases where IDTs are still contra-indicated. In vitro tests have shown promising results in the diagnosis of SCAR to drug. Positivity is particularly high when the lymphocyte transformation test (LTT) is combined with cytokines and cytotoxic markers measurement (cyto-LTT), but this still has to be confirmed with larger studies. Due to the rarity of SCAR, large multi-center collaborative studies are needed to better study the sensitivity and specificity of in vivo and in vitro tests.


Sign in / Sign up

Export Citation Format

Share Document