scholarly journals Multistep Optimization of β-Glucosidase Extraction from Germinated Soybeans (Glycine max L. Merril) and Recovery of Isoflavone Aglycones

Foods ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 110 ◽  
Author(s):  
Luciane Yoshiara ◽  
Tiago Madeira ◽  
Adriano de Camargo ◽  
Fereidoon Shahidi ◽  
Elza Ida

Epicotyls from germinated soybeans (EGS) have great potential as sources of endogenous β-glucosidase. Furthermore, this enzyme may improve the conversion of isoflavones into their corresponding aglycones. β-Glucosidase may also increase the release of aglycones from the cell wall of the plant materials. Therefore, the aim of this work was to optimize both the extraction of β-glucosidase from EGS and to further examine its application in defatted soybean cotyledon to improve the recovery of aglycones, which were evaluated by ultra-high performance liquid chromatography (UHPLC). A multistep optimization was carried out and the effects of temperature and pH were investigated by applying a central composite design. The linear effect of pH and the quadratic effect of pH and temperature were significant for the extraction of β-glucosidase and recovery aglycones, respectively. Optimum extraction of β-glucosidase from EGS occurred at 30 °C and pH 5.0. Furthermore, the maximum recovery of aglycones (98.7%), which occurred at 35 °C and pH 7.0–7.6 during 144 h of germination, increased 8.5 times with respect to the lowest concentration. The higher bioaccessibility of aglycones when compared with their conjugated counterparts is well substantiated. Therefore, the data provided in this contribution may be useful for enhancing the benefits of soybean, their products, and/or their processing by-products.

2021 ◽  
pp. 15-15
Author(s):  
Miona Miljkovic ◽  
Sladjana Davidovic ◽  
Aleksandra Djukic-Vukovic ◽  
Mila Ilic ◽  
Milica Simovic ◽  
...  

Dextransucrase (DS) is a glucosyltransferase (E. C. 2.4.1.5) that catalyzes the transfer of glucosyl residues from sucrose to dextran polymer and liberates fructose. This enzyme is associated with a wide application range of dextran and oligosaccharides. DS production by Leuconostoc mesenteroides T3 was optimized using a Central Composite Design under the Response Surface Methodology. Three variables were chosen for optimization: distillery stillage, sucrose and manganese concentration. The results showed that sucrose and manganese concentrations had a positive linear effect on DS production while all variable interactions (stillage-manganese, stillage-sucrose, and sucrose-manganese) had significant influences on the DS production. The maximal DS yield of 3.391?0.131 U cm-3, was obtained in the medium with 64.33 % distillery stillage concentration, 5.30 % sucrose concentration and 0.022 % manganese concentration. Our study revealed the potential of distillery stillage combined with sugar beet molasses, supplemented with sucrose and manganese to be employed as a valuable medium growth for lactic acid bacteria and production of DS. Also, taking into consideration the origin of the substrates, utilization of industrial by-products in this way has a great environmental relevance and is in accordance with circular economy.


2019 ◽  
Vol 09 ◽  
Author(s):  
Hossein Zaeri ◽  
Bahareh Kamyab Moghadas ◽  
Bijan Honarvar ◽  
Ali Shokuhi Rad

: In this research, the extraction of essential oil from Calotropis Procera with the family name of Asclepiadaceae, by supercritical carbon dioxide (CO2) solvent has been investigated in detail, and the yield and chemical profile of the extracts achieved by this method were compared with those resulted by the conventional Hydro distillation method. To optimize the process parameters of CO2 supercritical extraction (SCE) of the Calotropis Procera, the Response Surface Methodology (RSM) with central composite design (CCD) was employed. The effects of temperature, pressure, and extraction time on the oil yield are considered for investigation. Results showed that the data were sufficiently fitted into the second-order polynomial model. The extraction conditions, including pressure, temperature, and extraction time, were studied between 150-200 bar, 40-50 ºC, and 50-100 min, respectively. The optimal conditions are achieved as the temperature of 47.19ºC, the pressure of 172.2 bar, and time of 86 minutes with the retrieval rate of 31.39%.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4545
Author(s):  
Sudharsan Sadhasivam ◽  
Omer Barda ◽  
Varda Zakin ◽  
Ram Reifen ◽  
Edward Sionov

Patulin (PAT) and citrinin (CTN) are the most common mycotoxins produced by Penicillium and Aspergillus species and are often associated with fruits and fruit by-products. Hence, simple and reliable methods for monitoring these toxins in foodstuffs are required for regular quality assessment. In this study, we aimed to establish a cost-effective method for detection and quantification of PAT and CTN in pome fruits, such as apples and pears, using high-performance liquid chromatography (HPLC) coupled with spectroscopic detectors without the need for any clean-up steps. The method showed good performance in the analysis of these mycotoxins in apple and pear fruit samples with recovery ranges of 55–97% for PAT and 84–101% for CTN, respectively. The limits of detection (LOD) of PAT and CTN in fruits were 0.006 µg/g and 0.001 µg/g, while their limits of quantification (LOQ) were 0.018 µg/g and 0.003 µg/g, respectively. The present findings indicate that the newly developed HPLC method provides rapid and accurate detection of PAT and CTN in fruits.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1187
Author(s):  
Manyou Yu ◽  
Irene Gouvinhas ◽  
Ana Barros

In recent decades, an intensive search for natural and novel types of antioxidant polyphenolics has been carried out on numerous plant materials. However, the current literature has very little information on their storage stability in the form of freshly prepared infusions. This study aims to characterize the polyphenolic composition and the antioxidant capacity of pomegranate (Punica granatum L.) leaf infusions over one-day storage (analyzed at 0, 2, 4, 6, 8, and 24 h). Spectrophotometric evaluation demonstrated that the infusion presented no significant changes in the content of total phenols (131.40–133.47 mg gallic acid g−1) and ortho-diphenols (239.91–244.25 mg gallic acid g−1). The infusion also maintained high stability (over 98% and 82%, respectively) for flavonoids (53.30–55.84 mg rutin g−1) and condensed tannins (102.15–124.20 mg epicatechin g−1), with stable (>90%) potent antioxidant capacity (1.5–2.2 mmol Trolox g−1) throughout 0–24 h storage. The main decrease was observed during 0–2 h storage of flavonoids, 8–24 h storage of tannins, and 0–4 h storage of antioxidant capacity. Chromatographic analysis further revealed that 7 decreased and 11 increased compounds were found within 0–24 h storage. The good stability of the total polyphenolics and antioxidant properties might be related to the complex conversion and activity compensation among these compounds. The findings suggest that pomegranate leaf infusion could be of great interest in the valorization of high added-value by-products and in the application of green and functional alternatives in the food-pharma and nutraceutical industries.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3255-3271
Author(s):  
Nor Hafiza Sayuti ◽  
Ammar Akram Kamarudin ◽  
Norazalina Saad ◽  
Nor Asma Ab. Razak ◽  
Norhaizan Mohd Esa

Response surface methodology (RSM) was employed to optimize the extraction conditions of phenolic and antioxidant compounds from matcha green tea (Camellia sinensis) using central composite design (CCD). The desirability function was used to find the optimum extraction conditions. The highest polyphenol and antioxidant content yield were reached at a temperature of 80 °C, an extraction time of 20 min, a liquid-to-solid ratio of 100 mL/g, and a desirability value of 0.948. The experimental values for total phenolics under the optimum extraction conditions were 317.62 ± 3.45 mg GAE/g and 29.21 ± 0.38 mg RE/g for the total flavonoids. The antioxidant activity (AA) was evaluated using 2,2 diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), which showed radical scavenging activities at 88.28 ± 0.14% and 90.02 ± 0.14%, respectively. The high performance liquid chromatography (HPLC) analysis at the optimum condition revealed 14 compounds. Among the analyzed compounds, matcha green tea extract (MGTE) had the highest content of epigallocatechin gallate (EGCG) with 95.48 mg/g, followed by epicatechin gallate (ECG) at 74.48 mg/g, and catechin at 28.94 mg/g. The results suggested that the optimized parameters of heat-assisted extraction provide an ideal green extraction method for the extraction of the high polyphenol and antioxidant content in matcha green tea.


Author(s):  
Linda Zoungrana ◽  
Alyssa N. Smith ◽  
M. Cecilia do Nascimento Nunes

Method development and optimization play a central role in analytical chemistry and more specifically in food biochemistry. When it comes to research, it is common that analytical methods need to be modified to specific experimental biological tissues. While there are several published works on the activity of the enzyme chalcone synthase (CHS) in plant materials, such as sweet basil using ultra- high-performance liquid chromatography, there is a lack of information regarding extraction and activity of CHS in strawberries. Therefore, the main objective of this work was to optimize existing published methods for extraction and activity of CHS in strawberries, using spectrophotometric analysis. It was done through a literature search, a method dissection was performed, followed by theoretical optimization of the protocol, and finally an experimental optimization


2006 ◽  
Vol 4 (1) ◽  
pp. 22-27
Author(s):  
Petimat M Djambetova ◽  
Nina V Reutova

The plant test system soybean (Glycine max. (L.) Merill) line T219 turned out to be more sensitive than standart Ames test for evaluation of the mutagenic effect of soil, contaminated by products of combustion and domestic cottage processing of oil. It is preferable to use plant test systems for such investigations because they are more sensitive, simple and inexpensive in comparison with microbial ones.


Author(s):  
M. F. Zayats ◽  
S. M. Leschev

Based on the distribution constants of biphenazate, obtained experimentally and also calculated from literature data on the solubility of biphenazate in water and organic solvents, as well as experimental data on the extraction of biphenazate from plant matrices by various extractants, we selected the optimal conditions for extracting biphenazate from apples and cucumbers. The conditions for the purification of the extracts were also selected. Acetonitrile in the presence of ammonium sulfate and hexane was used for extraction of the pesticide. Purification of extracts of plant materials was carried out by partitioning between hexane and water-acetonitrile mixture. The samples obtained after this treatment were pure enough to determine the residual amounts of biphenazate in them at the maximum residue level determined in Belarus and the countries of the European Union, or lower using widespread liquid chromatography with diode-array (ultraviolet) detection.


2013 ◽  
Vol 750-752 ◽  
pp. 1852-1854
Author(s):  
Shu Jun Liu ◽  
Kun Feng ◽  
Hao Nan Xu ◽  
Ying Wang

The gasoline combustion dusts was analyzed by accelerated solvent extraction-high performance liquid chromatography(ASE-HPLC) in this paper. The optimum extraction conditions were that extraction time was 30min, temperature was 120°C and the pressure was 100Mpa. It is a efficient extraction method for a laboratory to quickly extract gasoline combustion dust samples.


Sign in / Sign up

Export Citation Format

Share Document