scholarly journals Non-Thermal Ultrasonic Extraction of Polyphenolic Compounds from Red Wine Lees

Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 472 ◽  
Author(s):  
Filip Dujmić ◽  
Karin Kovačević Ganić ◽  
Duska Ćurić ◽  
Sven Karlović ◽  
Tomislav Bosiljkov ◽  
...  

This study presents the results of conventional aqueous (CE) and non-conventional ultrasound-assisted (UAE) extractions of polyphenolic compounds from lees extracts of red wine varieties (Merlot and Vranac). The effect of ultrasound extraction time (t, s), and amplitude (A,%) from a 400 W ultrasound processor with different ultrasonic probes diameters (Ds, mm) on the amount and profile of polyphenolic compounds in the obtained extracts was investigated and compared to CE. The optimal conditions resulting in maximum extraction of phenolic compounds were: Probe diameter of 22 mm, amplitude 90% and extraction time for Vranac wine lees 1500 s and for Merlot wine lees extraction time of 1361 s. UAE proved to be significantly more effective in enhancing the extraction capacity of trans-resveratrol glucoside (30.57% to 300%), trans-resveratrol (36.36% to 45.75%), quercetin (39.94% to 43.83%), kaempferol (65.13% to 72.73%), petunidin-3-glucoside (41.53% to 64.95%), malvidin-3-glucoside (47.63% to 89.17%), malvidin-3-(6-O-acetyl) glucoside (23.84% to 49.74%), and malvidin-3-(6-O-p-coumaroyl) glucoside (26.77% to 34.93%) as compared to CE. Ultrasound reduced the extraction time (2.5-fold) and showed an increase of antioxidant potential by 76.39% (DPPH) and 125.83% (FRAP) compared to CE.

Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Hoang V. Chuyen ◽  
Paul D. Roach ◽  
John B. Golding ◽  
Sophie E. Parks ◽  
Minh H. Nguyen

The peel of Gac fruit (Momordica cochinchinensis Spreng.), which is considered as waste of Gac processing, has been found to possess high levels of carotenoids and other antioxidants. This study aimed at determining the optimal conditions of an ultrasound-assisted extraction for recovering carotenoids and antioxidant capacity from Gac peel. A response surface methodology using the Box–Behnken design was employed to investigate the impact of extraction time, temperature and ultrasonic power on the recovery of total carotenoid and antioxidant capacity. The results showed that an extraction time of 76 min, temperature of 50 °C and ultrasonic power of 250 W were the optimal conditions for the extraction. The experimental carotenoid yield and antioxidant capacity obtained under the optimal extraction conditions were validated as 269 mg/100 g DW (dry weight) and 822 µM TE (Trolox equivalent)/100 g DW, respectively. These values were not significantly different from the values predicted by the models. The HPLC analysis for carotenoid composition showed that β-carotene, lycopene and lutein were the principal carotenoids of the extract, which constitute 86% of the total carotenoid content. Based on the obtained results, the ultrasound-assisted extraction using ethyl acetate under the above optimal conditions is suggested for the simultaneous recovery of carotenoids and antioxidant capacity from Gac peel.


Author(s):  
Irina A. Starichenko ◽  
◽  
Mikhail I. Degtev ◽  
Yulia B. Elchischeva ◽  
Pavel V. Melnikov ◽  
...  

The optimal conditions of separation of aqueous system containing antipyrine, benzoic acid, hydrochloric or nitric acids, inorganic salting-out agents, and water at 85 ° C have been determined. The resulting organic phase contains the antipyrinium benzoate salt, which is a phase former. It is shown that the concentration of hydrochloric and nitric acids in the range of 0,01–0,20 mol/l promotes the stratification of the system, and above 0.4 mol l leads to homogenization. The conditions for the quantitative or maximum extraction of macroquantities of scandium (III) in the studied systems were found and their extraction capacity was determined. Inorganic salting-out agents provide separation even in the presence of 0,5 mol/l hydrochloric or nitric acid, while the degree of extraction of scandium (III) ions is significantly increased.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 189
Author(s):  
Sana Ben-Othman ◽  
Hedi Kaldmäe ◽  
Reelika Rätsep ◽  
Uko Bleive ◽  
Alar Aluvee ◽  
...  

Polyphenolic compounds, plant secondary metabolites essential for plant survival, are known for their high antioxidant and anti-inflammatory activity. In addition, several polyphenols, such as phloretin, also have potential antiviral effects, making these compounds potential ingredients of biofunctional foods. A promising source for the extraction of phloretin is a by-product of apple production—apple tree leaves. Focusing on green technologies, the first aim of the present study was to optimize the direct ultrasound-assisted extraction conditions to gain the maximum yield of phloretin from air-dried apple leaves. For the optimization of process parameters, we applied the response surface method with Box–Behnken design. The optimal extraction conditions were extraction time 14.4 min, sonication amplitude 10% and 10 g of sample per 100 mL solvent (70% ethanol, w/w). Using these conditions, we assessed the content of individual and total polyphenolic compounds along with antioxidant activity in the leaves of different autumn and winter apple cultivars grown in Estonia. The analyses were carried out with chromatographic (HPLC-DAD-MS/MS) and spectrophotometric methods. The phloretin concentration ranged from 292 to 726 µg/g and antioxidant activity from 6.06 to 11.42 mg GA eq./g, these being the highest in the local winter cultivars ‘Paide taliõun’ and ‘Tellissaare’, respectively.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3703
Author(s):  
Ming-Chien Hsiao ◽  
Wei-Ting Lin ◽  
Wei-Cheng Chiu ◽  
Shuhn-Shyurng Hou

In this study, ultrasound was used to accelerate two-stage (esterification–transesterification) catalytic synthesis of biodiesel from used cooking oil, which originally had a high acid value (4.35 mg KOH/g). In the first stage, acid-catalyzed esterification reaction conditions were developed with a 9:1 methanol/oil molar ratio, sulfuric acid dosage at 2 wt %, and a reaction temperature of 60 °C. Under ultrasound irradiation for 40 min, the acid value was effectively decreased from 4.35 to 1.67 mg KOH/g, which was decreased to a sufficient level (<2 mg KOH/g) to avoid the saponification problem for the subsequent transesterification reaction. In the following stage, base-catalyzed transesterification reactions were carried out with a 12:1 methanol/oil molar ratio, a sodium hydroxide dosage of 1 wt %, and a reaction temperature of 65 °C. Under ultrasound-assisted transesterification for 40 min, the conversion rate of biodiesel reached 97.05%, which met the requirement of EN 14214 standard, i.e., 96.5% minimum. In order to evaluate and explore the improvement of the ultrasound-assisted two-stage (esterification–transesterification) process in shortening the reaction time, additional two-stage biodiesel synthesis experiments using the traditional mechanical stirring method under the optimal conditions were further carried out in this study. It was found that, under the same optimal conditions, using the ultrasound-assisted two-stage process, the total reaction time was significantly reduced to only 80 min, which was much shorter than the total time required by the conventional method of 140 min. It is worth noting that compared with the traditional method without ultrasound, the intensification of the ultrasound-assisted two-stage process significantly shortened the total time from 140 min to 80 min, which is a reduction of 42.9%. It was concluded that the ultrasound-assisted two-stage (esterification–transesterification) catalytic process is an effective and time-saving method for synthesizing biodiesel from used cooking oil with a high acid value.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1231
Author(s):  
Da Hye Gam ◽  
Ji Woo Hong ◽  
Jun Hee Kim ◽  
Jin Woo Kim

Response surface methodology was employed to optimize the ultrasound-assisted extraction (UAE) conditions for simultaneous optimization of dependent variables, including DPPH radical scavenging activity (RSA), tyrosinase activity inhibition (TAI), and collagenase activity inhibition (CAI) of peanut shell extracts. The effects of the main variables including extraction time (5.0~55.0 min, X1), extraction temperature (26.0~94.0 °C, X2), and ethanol concentration (0.0%~99.5%, X3) were optimized. Based on experimental values from each condition, quadratic regression models were derived for the prediction of optimum conditions. The coefficient of determination (R2) of the independent variable was in the range of 0.89~0.96, which demonstrates that the regression model is suitable for the prediction. In predicting optimal UAE conditions based on the superimposing method, extraction time of 31.2 min, extraction temperature of 36.6 °C, and ethanol concentration of 93.2% were identified. Under these conditions, RSA of 74.9%, TAI of 50.6%, and CAI of 86.8% were predicted, showing good agreement with the experimental values. A reverse transcription polymerase chain reaction showed that peanut shell extract decreased mRNA levels of tyrosinase-related protein-1 and matrix metalloproteinase-3 genes in B16-F0 cell. Therefore, we identified the skin-whitening and anti-wrinkle effects of peanut shell extracts at protein as well as gene expression levels, and the results show that peanut shell is an effective cosmetic material for skin-whitening and anti-wrinkle effects. Based on this study, peanut shell, which was considered a byproduct, can be used for the development of healthy foods, medicines, and cosmetics.


2012 ◽  
Vol 518-523 ◽  
pp. 430-435 ◽  
Author(s):  
Hai Rong Guo ◽  
Shao Ying Ma ◽  
Xiao Fei Wang ◽  
Er Fang Ren ◽  
Yuan Yuan Li

Microwave-assisted extraction (MAE) was used to extract chlorophylls from filter mud. Ethanol was used as the solvent. The optimal conditions for the MAE of chlorophylls were concluded from the study as the irradiation time, 50 s, the ratio of liquid to solid, 8:1 (mL/g), the extraction temperature, 40 °C, and the extraction time, 60 min. Compared with conventional extraction, the MAE of chlorophylls from the filter mud was more effective. The extraction time for MAE was 60 min with 0.277 mg/g chlorophyll yield, while conventional extraction needed 240 min with only about 0.259 mg/g chlorophyll yield. The Ultraviolet Absorption Spectra of the extracted chlorophylls showed that there was a strong absorption peak at about 663 nm. C=N, Mg-N and C-N was not seen existed from the infrared spectroscopy probably because that the mixed extracts were not purified and the chlorophyll content was less.


2015 ◽  
Vol 11 (4) ◽  
pp. 479-492 ◽  
Author(s):  
Tuyen C. Kha ◽  
Minh H. Nguyen ◽  
Paul D. Roach ◽  
Costas E. Stathopoulos

Abstract The study aimed to optimise the ultrasound-assisted aqueous extraction of oil, β-carotene and lycopene from powdered microwave-dried gac arils. Ultrasound power, extraction time, powder particle size and the ratio of water to gac powder during the extraction, the centrifugal force used to recover the extracted components were investigated. Microwave-drying followed by aqueous extraction without ultrasound-assistance and air-drying followed by aqueous extraction with or without ultrasound-assistance was also carried out for comparisons. The gac material left behind after the extractions was also investigated using scanning electron microscopy (SEM). The results showed that ultrasound power of 32 W/g of aril powder, extraction time of 20 min, powder particle sizes of 0.3–0.5 mm, a ratio of water to powder of 9 g/g and a centrifugal force of 6,750×g gave optimal extraction efficiencies for oil (90%), β-carotene (84%) and lycopene (83%), and the oil had a low peroxide value (PV) of 2.2 meq/kg. The SEM analysis confirmed that the combination of microwave-drying followed by ultrasound-assisted aqueous extraction caused strong disruption of the gac aril cellular structures, which was consistent with the high extraction of oil, β-carotene and lycopene obtained with the combination. It was concluded that gac oil containing high amounts of β-carotene and lycopene and having a low PV could be extracted using microwave-drying and ultrasound-assisted aqueous extraction.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ming-Chi Wei ◽  
Yu-Chiao Yang ◽  
Show-Jen Hong

Oleanolic acid (OA) and ursolic acid (UA) were extracted fromHedyotis diffusausing a hyphenated procedure of ultrasound-assisted and supercritical carbon dioxide (HSC–CO2) extraction at different temperatures, pressures, cosolvent percentages, and SC–CO2flow rates. The results indicated that these parameters significantly affected the extraction yield. The maximal yields of OA (0.917 mg/g of dry plant) and UA (3.540 mg/g of dry plant) were obtained at a dynamic extraction time of 110 min, a static extraction time of 15 min, 28.2 MPa, and 56°C with a 12.5% (v/v) cosolvent (ethanol/water = 82/18, v/v) and SC–CO2flowing at 2.3 mL/min (STP). The extracted yields were then analyzed by high performance liquid chromatography (HPLC) to quantify the OA and UA. The present findings revealed thatH. diffusais a potential source of OA and UA. In addition, using the hyphenated procedure for extraction is a promising and alternative process for recovering OA and UA fromH. diffusaat high concentrations.


2008 ◽  
Vol 22 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Véronique Leblais ◽  
Stéphanie Krisa ◽  
Josep Valls ◽  
Arnaud Courtois ◽  
Sabrina Abdelouhab ◽  
...  

2021 ◽  
Vol 872 ◽  
pp. 33-37
Author(s):  
Kong Sela ◽  
Wiratni Budhijanto ◽  
Arief Budiman

Protein is a substantial nutrition that essentially required by human. Spirulina platensis (Spp), well known as protein source could be a significant source to be used for many industrial applications. This study was investigated the effectiveness of ultrasound assisted extraction (UAE) method for protein extraction from Spp at various composition of solvent mixture and extraction time. Ethanol and mixture of methanol-ethanol were used as solvent. Extraction was conducted by varying ratios of solvent to biomass at 10:1, 12.5:1, and 15:1 (v/w), and extraction time (20, 35, and 50 min). Optimum protein recovery from dry Spp was 42.55 ± 0.43% obtained by using 20 ml of the mixture of methanol and ethanol at 50 min of extraction time. This study also conducted that mixture of methanol and ethanol was a better solvent on improving the ultrasound assisted extraction, as indicated by high protein recovery with less amount of solvent volume used.


Sign in / Sign up

Export Citation Format

Share Document